MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem1 Structured version   Visualization version   GIF version

Theorem iblcnlem1 23277
Description: Lemma for iblcnlem 23278. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem1.v ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iblcnlem1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2610 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2 eqidd 2610 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
3 itgcnlem1.v . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
41, 2, 3isibl2 23256 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
5 c0ex 9890 . . . . . . . 8 0 ∈ V
6 1ex 9891 . . . . . . . 8 1 ∈ V
7 ax-icn 9851 . . . . . . . . . . 11 i ∈ ℂ
8 exp0 12681 . . . . . . . . . . 11 (i ∈ ℂ → (i↑0) = 1)
97, 8ax-mp 5 . . . . . . . . . 10 (i↑0) = 1
109itgvallem 23274 . . . . . . . . 9 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
1110eleq1d 2671 . . . . . . . 8 (𝑘 = 0 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ))
12 exp1 12683 . . . . . . . . . . 11 (i ∈ ℂ → (i↑1) = i)
137, 12ax-mp 5 . . . . . . . . . 10 (i↑1) = i
1413itgvallem 23274 . . . . . . . . 9 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
1514eleq1d 2671 . . . . . . . 8 (𝑘 = 1 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
165, 6, 11, 15ralpr 4184 . . . . . . 7 (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
173div1d 10642 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
1817fveq2d 6092 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
1918ibllem 23254 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
2019mpteq2dv 4667 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2120fveq2d 6092 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
22 itgcnlem.r . . . . . . . . . 10 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2321, 22syl6eqr 2661 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = 𝑅)
2423eleq1d 2671 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
25 itgcnlem.t . . . . . . . . . 10 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
26 imval 13641 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
273, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
2827ibllem 23254 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
2928mpteq2dv 4667 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
3029fveq2d 6092 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3125, 30syl5req 2656 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
3231eleq1d 2671 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
3324, 32anbi12d 742 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
3416, 33syl5bb 270 . . . . . 6 (𝜑 → (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
35 2ex 10939 . . . . . . . 8 2 ∈ V
36 3ex 10943 . . . . . . . 8 3 ∈ V
37 i2 12782 . . . . . . . . . 10 (i↑2) = -1
3837itgvallem 23274 . . . . . . . . 9 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
3938eleq1d 2671 . . . . . . . 8 (𝑘 = 2 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ))
40 i3 12783 . . . . . . . . . 10 (i↑3) = -i
4140itgvallem 23274 . . . . . . . . 9 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
4241eleq1d 2671 . . . . . . . 8 (𝑘 = 3 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
4335, 36, 39, 42ralpr 4184 . . . . . . 7 (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
44 itgcnlem.s . . . . . . . . . 10 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
453renegd 13743 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
46 ax-1cn 9850 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4746negnegi 10202 . . . . . . . . . . . . . . . . . 18 --1 = 1
4847oveq2i 6538 . . . . . . . . . . . . . . . . 17 (-𝐵 / --1) = (-𝐵 / 1)
493negcld 10230 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
5049div1d 10642 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
5148, 50syl5eq 2655 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
5246negcli 10200 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
53 neg1ne0 10973 . . . . . . . . . . . . . . . . . 18 -1 ≠ 0
54 div2neg 10597 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
5552, 53, 54mp3an23 1407 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
563, 55syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
5751, 56eqtr3d 2645 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
5857fveq2d 6092 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
5945, 58eqtr3d 2645 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
6059ibllem 23254 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
6160mpteq2dv 4667 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
6261fveq2d 6092 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
6344, 62syl5req 2656 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) = 𝑆)
6463eleq1d 2671 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
65 itgcnlem.u . . . . . . . . . 10 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
66 imval 13641 . . . . . . . . . . . . . . 15 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
6749, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
683imnegd 13744 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
697negnegi 10202 . . . . . . . . . . . . . . . . . 18 --i = i
7069eqcomi 2618 . . . . . . . . . . . . . . . . 17 i = --i
7170oveq2i 6538 . . . . . . . . . . . . . . . 16 (-𝐵 / i) = (-𝐵 / --i)
727negcli 10200 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
73 ine0 10316 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
747, 73negne0i 10207 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
75 div2neg 10597 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
7672, 74, 75mp3an23 1407 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
773, 76syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
7871, 77syl5eq 2655 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
7978fveq2d 6092 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
8067, 68, 793eqtr3d 2651 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
8180ibllem 23254 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
8281mpteq2dv 4667 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
8382fveq2d 6092 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
8465, 83syl5req 2656 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) = 𝑈)
8584eleq1d 2671 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
8664, 85anbi12d 742 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ) ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8743, 86syl5bb 270 . . . . . 6 (𝜑 → (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8834, 87anbi12d 742 . . . . 5 (𝜑 → ((∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
89 1le3 11091 . . . . . . . . . 10 1 ≤ 3
90 1eluzge0 11564 . . . . . . . . . . 11 1 ∈ (ℤ‘0)
91 3z 11243 . . . . . . . . . . 11 3 ∈ ℤ
92 elfz5 12160 . . . . . . . . . . 11 ((1 ∈ (ℤ‘0) ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ 1 ≤ 3))
9390, 91, 92mp2an 703 . . . . . . . . . 10 (1 ∈ (0...3) ↔ 1 ≤ 3)
9489, 93mpbir 219 . . . . . . . . 9 1 ∈ (0...3)
95 fzsplit 12193 . . . . . . . . 9 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
9694, 95ax-mp 5 . . . . . . . 8 (0...3) = ((0...1) ∪ ((1 + 1)...3))
97 0z 11221 . . . . . . . . . . 11 0 ∈ ℤ
98 fzpr 12221 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
9997, 98ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
100 1e0p1 11384 . . . . . . . . . . 11 1 = (0 + 1)
101100oveq2i 6538 . . . . . . . . . 10 (0...1) = (0...(0 + 1))
102100preq2i 4215 . . . . . . . . . 10 {0, 1} = {0, (0 + 1)}
10399, 101, 1023eqtr4i 2641 . . . . . . . . 9 (0...1) = {0, 1}
104 2z 11242 . . . . . . . . . . 11 2 ∈ ℤ
105 fzpr 12221 . . . . . . . . . . 11 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
106104, 105ax-mp 5 . . . . . . . . . 10 (2...(2 + 1)) = {2, (2 + 1)}
107 1p1e2 10981 . . . . . . . . . . 11 (1 + 1) = 2
108 df-3 10927 . . . . . . . . . . 11 3 = (2 + 1)
109107, 108oveq12i 6539 . . . . . . . . . 10 ((1 + 1)...3) = (2...(2 + 1))
110108preq2i 4215 . . . . . . . . . 10 {2, 3} = {2, (2 + 1)}
111106, 109, 1103eqtr4i 2641 . . . . . . . . 9 ((1 + 1)...3) = {2, 3}
112103, 111uneq12i 3726 . . . . . . . 8 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
11396, 112eqtri 2631 . . . . . . 7 (0...3) = ({0, 1} ∪ {2, 3})
114113raleqi 3118 . . . . . 6 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
115 ralunb 3755 . . . . . 6 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
116114, 115bitri 262 . . . . 5 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
117 an4 860 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
11888, 116, 1173bitr4g 301 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
119118anbi2d 735 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
120 3anass 1034 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
121119, 120syl6bbr 276 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
1224, 121bitrd 266 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  cun 3537  ifcif 4035  {cpr 4126   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793  ici 9794   + caddc 9795  cle 9931  -cneg 10118   / cdiv 10533  2c2 10917  3c3 10918  cz 11210  cuz 11519  ...cfz 12152  cexp 12677  cre 13631  cim 13632  MblFncmbf 23106  2citg2 23108  𝐿1cibl 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-ibl 23114
This theorem is referenced by:  iblcnlem  23278  iblcn  23288  bddiblnc  32446
  Copyright terms: Public domain W3C validator