MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblitg Structured version   Visualization version   GIF version

Theorem iblitg 24363
Description: If a function is integrable, then the 2 integrals of the function's decompositions all exist. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblitg.1 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
iblitg.2 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
iblitg.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
iblitg.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblitg ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)   𝐺(𝑥)

Proof of Theorem iblitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblitg.1 . . . . 5 (𝜑𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
21adantr 483 . . . 4 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
3 iblitg.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
43adantlr 713 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑𝐾))))
5 iexpcyc 13563 . . . . . . . . . 10 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
65oveq2d 7166 . . . . . . . . 9 (𝐾 ∈ ℤ → (𝐵 / (i↑(𝐾 mod 4))) = (𝐵 / (i↑𝐾)))
76fveq2d 6668 . . . . . . . 8 (𝐾 ∈ ℤ → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
87ad2antlr 725 . . . . . . 7 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))) = (ℜ‘(𝐵 / (i↑𝐾))))
94, 8eqtr4d 2859 . . . . . 6 (((𝜑𝐾 ∈ ℤ) ∧ 𝑥𝐴) → 𝑇 = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
109ibllem 24359 . . . . 5 ((𝜑𝐾 ∈ ℤ) → if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
1110mpteq2dv 5154 . . . 4 ((𝜑𝐾 ∈ ℤ) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
122, 11eqtrd 2856 . . 3 ((𝜑𝐾 ∈ ℤ) → 𝐺 = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
1312fveq2d 6668 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
14 oveq2 7158 . . . . . . . . . . 11 (𝑘 = (𝐾 mod 4) → (i↑𝑘) = (i↑(𝐾 mod 4)))
1514oveq2d 7166 . . . . . . . . . 10 (𝑘 = (𝐾 mod 4) → (𝐵 / (i↑𝑘)) = (𝐵 / (i↑(𝐾 mod 4))))
1615fveq2d 6668 . . . . . . . . 9 (𝑘 = (𝐾 mod 4) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))
1716breq2d 5070 . . . . . . . 8 (𝑘 = (𝐾 mod 4) → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))))
1817anbi2d 630 . . . . . . 7 (𝑘 = (𝐾 mod 4) → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))))))
1918, 16ifbieq1d 4489 . . . . . 6 (𝑘 = (𝐾 mod 4) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))
2019mpteq2dv 5154 . . . . 5 (𝑘 = (𝐾 mod 4) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0)))
2120fveq2d 6668 . . . 4 (𝑘 = (𝐾 mod 4) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))))
2221eleq1d 2897 . . 3 (𝑘 = (𝐾 mod 4) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ))
23 iblitg.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 eqidd 2822 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
25 eqidd 2822 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
26 iblitg.4 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
2724, 25, 26isibl2 24361 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
2823, 27mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
2928simprd 498 . . . 4 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
3029adantr 483 . . 3 ((𝜑𝐾 ∈ ℤ) → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
31 4nn 11714 . . . . . 6 4 ∈ ℕ
32 zmodfz 13255 . . . . . 6 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 mod 4) ∈ (0...(4 − 1)))
3331, 32mpan2 689 . . . . 5 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...(4 − 1)))
34 4m1e3 11760 . . . . . 6 (4 − 1) = 3
3534oveq2i 7161 . . . . 5 (0...(4 − 1)) = (0...3)
3633, 35eleqtrdi 2923 . . . 4 (𝐾 ∈ ℤ → (𝐾 mod 4) ∈ (0...3))
3736adantl 484 . . 3 ((𝜑𝐾 ∈ ℤ) → (𝐾 mod 4) ∈ (0...3))
3822, 30, 37rspcdva 3624 . 2 ((𝜑𝐾 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑(𝐾 mod 4))))), (ℜ‘(𝐵 / (i↑(𝐾 mod 4)))), 0))) ∈ ℝ)
3913, 38eqeltrd 2913 1 ((𝜑𝐾 ∈ ℤ) → (∫2𝐺) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  ifcif 4466   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532  ici 10533  cle 10670  cmin 10864   / cdiv 11291  cn 11632  3c3 11687  4c4 11688  cz 11975  ...cfz 12886   mod cmo 13231  cexp 13423  cre 14450  MblFncmbf 24209  2citg2 24211  𝐿1cibl 24212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-ibl 24217
This theorem is referenced by:  itgcl  24378  itgcnlem  24384  iblss  24399  iblss2  24400  itgsplit  24430
  Copyright terms: Public domain W3C validator