Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplitf Structured version   Visualization version   GIF version

Theorem iblsplitf 39490
 Description: A version of iblsplit 39486 using bound-variable hypotheses instead of distinct variable conditions" (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplitf.X 𝑥𝜑
iblsplitf.vol (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplitf.u (𝜑𝑈 = (𝐴𝐵))
iblsplitf.c ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplitf.a (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplitf.b (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplitf (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iblsplitf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2761 . . 3 𝑦𝐶
2 nfcsb1v 3530 . . 3 𝑥𝑦 / 𝑥𝐶
3 csbeq1a 3523 . . 3 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
41, 2, 3cbvmpt 4709 . 2 (𝑥𝑈𝐶) = (𝑦𝑈𝑦 / 𝑥𝐶)
5 iblsplitf.vol . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
6 iblsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
7 simpr 477 . . . 4 ((𝜑𝑦𝑈) → 𝑦𝑈)
8 iblsplitf.X . . . . . 6 𝑥𝜑
9 nfv 1840 . . . . . 6 𝑥 𝑦𝑈
108, 9nfan 1825 . . . . 5 𝑥(𝜑𝑦𝑈)
11 iblsplitf.c . . . . . . 7 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
1211adantlr 750 . . . . . 6 (((𝜑𝑦𝑈) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
1312ex 450 . . . . 5 ((𝜑𝑦𝑈) → (𝑥𝑈𝐶 ∈ ℂ))
1410, 13ralrimi 2951 . . . 4 ((𝜑𝑦𝑈) → ∀𝑥𝑈 𝐶 ∈ ℂ)
15 rspcsbela 3978 . . . 4 ((𝑦𝑈 ∧ ∀𝑥𝑈 𝐶 ∈ ℂ) → 𝑦 / 𝑥𝐶 ∈ ℂ)
167, 14, 15syl2anc 692 . . 3 ((𝜑𝑦𝑈) → 𝑦 / 𝑥𝐶 ∈ ℂ)
173equcoms 1944 . . . . . 6 (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶)
1817eqcomd 2627 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
192, 1, 18cbvmpt 4709 . . . 4 (𝑦𝐴𝑦 / 𝑥𝐶) = (𝑥𝐴𝐶)
20 iblsplitf.a . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2119, 20syl5eqel 2702 . . 3 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐶) ∈ 𝐿1)
222, 1, 18cbvmpt 4709 . . . 4 (𝑦𝐵𝑦 / 𝑥𝐶) = (𝑥𝐵𝐶)
23 iblsplitf.b . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
2422, 23syl5eqel 2702 . . 3 (𝜑 → (𝑦𝐵𝑦 / 𝑥𝐶) ∈ 𝐿1)
255, 6, 16, 21, 24iblsplit 39486 . 2 (𝜑 → (𝑦𝑈𝑦 / 𝑥𝐶) ∈ 𝐿1)
264, 25syl5eqel 2702 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  Ⅎwnf 1705   ∈ wcel 1987  ∀wral 2907  ⦋csb 3514   ∪ cun 3553   ∩ cin 3554   ↦ cmpt 4673  ‘cfv 5847  ℂcc 9878  0cc0 9880  vol*covol 23138  𝐿1cibl 23292 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-rest 16004  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-cmp 21100  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-ibl 23297 This theorem is referenced by:  iblspltprt  39493
 Copyright terms: Public domain W3C validator