MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icc0 Structured version   Visualization version   GIF version

Theorem icc0 12172
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
icc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))

Proof of Theorem icc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccval 12163 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
21eqeq1d 2623 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
3 df-ne 2791 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅)
4 rabn0 3937 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
53, 4bitr3i 266 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
6 xrletr 11940 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
763com23 1268 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
873expa 1262 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
98rexlimdva 3025 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
10 simp2 1060 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
11 simp3 1061 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
12 xrleid 11934 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
13123ad2ant2 1081 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
14 breq2 4622 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
15 breq1 4621 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
1614, 15anbi12d 746 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐵𝐵𝐵)))
1716rspcev 3298 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1810, 11, 13, 17syl12anc 1321 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
19183expia 1264 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
209, 19impbid 202 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) ↔ 𝐴𝐵))
215, 20syl5bb 272 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐴𝐵))
22 xrlenlt 10054 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2321, 22bitrd 268 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴))
2423con4bid 307 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐵 < 𝐴))
252, 24bitrd 268 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  {crab 2911  c0 3896   class class class wbr 4618  (class class class)co 6610  *cxr 10024   < clt 10025  cle 10026  [,]cicc 12127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-pre-lttri 9961  ax-pre-lttrn 9962
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-icc 12131
This theorem is referenced by:  iccntr  22543  icccmp  22547  cniccbdd  23149  iccvolcl  23254  itgioo  23501  c1lip1  23677  pserulm  24093  iccdifprioo  39176  cncfiooicc  39433  ibliooicc  39515  voliccico  39544  vonicc  40227
  Copyright terms: Public domain W3C validator