MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icc0 Structured version   Visualization version   GIF version

Theorem icc0 12789
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
icc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))

Proof of Theorem icc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccval 12780 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
21eqeq1d 2825 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
3 df-ne 3019 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅)
4 rabn0 4341 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
53, 4bitr3i 279 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
6 xrletr 12554 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
763com23 1122 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
873expa 1114 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
98rexlimdva 3286 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
10 simp2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
11 simp3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
12 xrleid 12547 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
13123ad2ant2 1130 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
14 breq2 5072 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
15 breq1 5071 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
1614, 15anbi12d 632 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐵𝐵𝐵)))
1716rspcev 3625 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1810, 11, 13, 17syl12anc 834 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
19183expia 1117 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
209, 19impbid 214 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) ↔ 𝐴𝐵))
215, 20syl5bb 285 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐴𝐵))
22 xrlenlt 10708 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2321, 22bitrd 281 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴))
2423con4bid 319 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐵 < 𝐴))
252, 24bitrd 281 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  c0 4293   class class class wbr 5068  (class class class)co 7158  *cxr 10676   < clt 10677  cle 10678  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-icc 12748
This theorem is referenced by:  iccntr  23431  icccmp  23435  cniccbdd  24064  iccvolcl  24170  itgioo  24418  c1lip1  24596  pserulm  25012  iccdifprioo  41799  cncfiooicc  42184  ibliooicc  42263  voliccico  42291  vonicc  42974
  Copyright terms: Public domain W3C validator