MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccld Structured version   Visualization version   GIF version

Theorem icccld 22510
Description: Closed intervals are closed sets of the standard topology on . (Contributed by FL, 14-Sep-2007.)
Assertion
Ref Expression
icccld ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icccld
StepHypRef Expression
1 difreicc 12262 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
2 retop 22505 . . . 4 (topGen‘ran (,)) ∈ Top
3 iooretop 22509 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
4 iooretop 22509 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
5 unopn 20648 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,)))
62, 3, 4, 5mp3an 1421 . . 3 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,))
71, 6syl6eqel 2706 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
8 iccssre 12213 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9 uniretop 22506 . . . 4 ℝ = (topGen‘ran (,))
109iscld2 20772 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
112, 8, 10sylancr 694 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
127, 11mpbird 247 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  cdif 3557  cun 3558  wss 3560  ran crn 5085  cfv 5857  (class class class)co 6615  cr 9895  +∞cpnf 10031  -∞cmnf 10032  (,)cioo 12133  [,]cicc 12136  topGenctg 16038  Topctop 20638  Clsdccld 20760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-ioo 12137  df-icc 12140  df-topgen 16044  df-top 20639  df-bases 20690  df-cld 20763
This theorem is referenced by:  cnmpt2pc  22667  cvmliftlem10  31037  mblfinlem1  33117  mblfinlem2  33118  icccmpALT  33311
  Copyright terms: Public domain W3C validator