MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmp Structured version   Visualization version   GIF version

Theorem icccmp 22536
Description: A closed interval in is compact. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
Assertion
Ref Expression
icccmp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)

Proof of Theorem icccmp
Dummy variables 𝑢 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.2 . 2 𝑇 = (𝐽t (𝐴[,]𝐵))
2 icccmp.1 . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 eqid 2621 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
4 eqid 2621 . . . . . . . 8 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
5 simplll 797 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴 ∈ ℝ)
6 simpllr 798 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ ℝ)
7 simplr 791 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐴𝐵)
8 elpwi 4140 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝐽𝑢𝐽)
98ad2antrl 763 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝑢𝐽)
10 simprr 795 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → (𝐴[,]𝐵) ⊆ 𝑢)
112, 1, 3, 4, 5, 6, 7, 9, 10icccmplem3 22535 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → 𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧})
12 oveq2 6612 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴[,]𝑥) = (𝐴[,]𝐵))
1312sseq1d 3611 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐵) ⊆ 𝑧))
1413rexbidv 3045 . . . . . . . . 9 (𝑥 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1514elrab 3346 . . . . . . . 8 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ↔ (𝐵 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1615simprbi 480 . . . . . . 7 (𝐵 ∈ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1711, 16syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ (𝑢 ∈ 𝒫 𝐽 ∧ (𝐴[,]𝐵) ⊆ 𝑢)) → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)
1817expr 642 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) ∧ 𝑢 ∈ 𝒫 𝐽) → ((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
1918ralrimiva 2960 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧))
20 retop 22475 . . . . . 6 (topGen‘ran (,)) ∈ Top
212, 20eqeltri 2694 . . . . 5 𝐽 ∈ Top
22 iccssre 12197 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2322adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
24 uniretop 22476 . . . . . . 7 ℝ = (topGen‘ran (,))
252unieqi 4411 . . . . . . 7 𝐽 = (topGen‘ran (,))
2624, 25eqtr4i 2646 . . . . . 6 ℝ = 𝐽
2726cmpsub 21113 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2821, 23, 27sylancr 694 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐽t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 𝐽((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑧 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑧)))
2919, 28mpbird 247 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
30 rexr 10029 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
31 rexr 10029 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
32 icc0 12165 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3330, 31, 32syl2an 494 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
3433biimpar 502 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
3534oveq2d 6620 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = (𝐽t ∅))
36 rest0 20883 . . . . . 6 (𝐽 ∈ Top → (𝐽t ∅) = {∅})
3721, 36ax-mp 5 . . . . 5 (𝐽t ∅) = {∅}
3835, 37syl6eq 2671 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) = {∅})
39 0cmp 21107 . . . 4 {∅} ∈ Comp
4038, 39syl6eqel 2706 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
41 lelttric 10088 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵𝐵 < 𝐴))
4229, 40, 41mpjaodan 826 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐽t (𝐴[,]𝐵)) ∈ Comp)
431, 42syl5eqel 2702 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  {crab 2911  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   cuni 4402   class class class wbr 4613   × cxp 5072  ran crn 5075  cres 5076  ccom 5078  cfv 5847  (class class class)co 6604  Fincfn 7899  cr 9879  *cxr 10017   < clt 10018  cle 10019  cmin 10210  (,)cioo 12117  [,]cicc 12120  abscabs 13908  t crest 16002  topGenctg 16019  Topctop 20617  Compccmp 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-icc 12124  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-rest 16004  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623  df-cmp 21100
This theorem is referenced by:  iicmp  22597  cnheiborlem  22661  evthicc  23135  ovolicc2  23197  dvcnvrelem2  23685  fourierdlem42  39670
  Copyright terms: Public domain W3C validator