Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icceuelpart Structured version   Visualization version   GIF version

Theorem icceuelpart 43603
Description: An element of a partitioned half-open interval of extended reals is an element of exactly one part of the partition. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
icceuelpart ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝑖,𝑋   𝜑,𝑖

Proof of Theorem icceuelpart
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
21adantr 483 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → 𝑃 ∈ (RePart‘𝑀))
3 iccpartiun.m . . . . 5 (𝜑𝑀 ∈ ℕ)
4 iccelpart 43600 . . . . 5 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
53, 4syl 17 . . . 4 (𝜑 → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
65adantr 483 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
7 fveq1 6671 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
8 fveq1 6671 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
97, 8oveq12d 7176 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
109eleq2d 2900 . . . . . . 7 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
11 fveq1 6671 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
12 fveq1 6671 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
1311, 12oveq12d 7176 . . . . . . . . 9 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1413eleq2d 2900 . . . . . . . 8 (𝑝 = 𝑃 → (𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514rexbidv 3299 . . . . . . 7 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1610, 15imbi12d 347 . . . . . 6 (𝑝 = 𝑃 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1716rspcva 3623 . . . . 5 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1817adantld 493 . . . 4 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1918com12 32 . . 3 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
202, 6, 19mp2and 697 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
213adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
221adantr 483 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
23 elfzofz 13056 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2423adantl 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2521, 22, 24iccpartxr 43586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
26 fzofzp1 13137 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
2726adantl 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
2821, 22, 27iccpartxr 43586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
2925, 28jca 514 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
3029adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*))
31 elico1 12784 . . . . . . 7 (((𝑃𝑖) ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
3230, 31syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1)))))
333adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
341adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
35 elfzofz 13056 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
3635adantl 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
3733, 34, 36iccpartxr 43586 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃𝑗) ∈ ℝ*)
38 fzofzp1 13137 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
3938adantl 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
4033, 34, 39iccpartxr 43586 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
4137, 40jca 514 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑀)) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
4241adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*))
43 elico1 12784 . . . . . . 7 (((𝑃𝑗) ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ*) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4442, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))))
4532, 44anbi12d 632 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) ↔ ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))))))
46 elfzoelz 13041 . . . . . . . . . 10 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
4746zred 12090 . . . . . . . . 9 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
48 elfzoelz 13041 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ)
4948zred 12090 . . . . . . . . 9 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
5047, 49anim12i 614 . . . . . . . 8 ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
5150adantl 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ))
52 lttri4 10727 . . . . . . 7 ((𝑖 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
5351, 52syl 17 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
543, 1icceuelpartlem 43602 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑖 < 𝑗 → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))))
5554imp31 420 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗))
56 simpl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → 𝑋 ∈ ℝ*)
5728adantrr 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5857adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑖 + 1)) ∈ ℝ*)
5937adantrl 714 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑗) ∈ ℝ*)
6059adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑗) ∈ ℝ*)
61 nltle2tri 43520 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑃𝑗) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6256, 58, 60, 61syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋))
6362pm2.21d 121 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑖 + 1)) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) ∧ (𝑃𝑗) ≤ 𝑋) → 𝑖 = 𝑗))
64633expd 1349 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗))))
6564ex 415 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6665com23 86 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → ((𝑃𝑗) ≤ 𝑋𝑖 = 𝑗)))))
6766com25 99 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → ((𝑃𝑗) ≤ 𝑋 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))))
6867imp4b 424 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (𝑋 < (𝑃‘(𝑖 + 1)) → 𝑖 = 𝑗)))
6968com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
70693adant3 1128 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (𝑋 < (𝑃‘(𝑖 + 1)) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7170com12 32 . . . . . . . . . . . 12 (𝑋 < (𝑃‘(𝑖 + 1)) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
72713ad2ant3 1131 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗)))
7372imp 409 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → 𝑖 = 𝑗))
7473com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑗)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7555, 74syldan 593 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑖 < 𝑗) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
7675expcom 416 . . . . . . 7 (𝑖 < 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
77 2a1 28 . . . . . . 7 (𝑖 = 𝑗 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
783, 1icceuelpartlem 43602 . . . . . . . . . . 11 (𝜑 → ((𝑗 ∈ (0..^𝑀) ∧ 𝑖 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
7978ancomsd 468 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 < 𝑖 → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))))
8079imp31 420 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖))
8140adantrl 714 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8281adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃‘(𝑗 + 1)) ∈ ℝ*)
8325adantrr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑃𝑖) ∈ ℝ*)
8483adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑃𝑖) ∈ ℝ*)
85 nltle2tri 43520 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ∈ ℝ* ∧ (𝑃‘(𝑗 + 1)) ∈ ℝ* ∧ (𝑃𝑖) ∈ ℝ*) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8656, 82, 84, 85syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ¬ (𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋))
8786pm2.21d 121 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → ((𝑋 < (𝑃‘(𝑗 + 1)) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) ∧ (𝑃𝑖) ≤ 𝑋) → 𝑖 = 𝑗))
88873expd 1349 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ ℝ* ∧ (𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀)))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗))))
8988ex 415 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℝ* → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9089com23 86 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℝ* → (𝑋 < (𝑃‘(𝑗 + 1)) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))))
9190imp4b 424 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → ((𝑃𝑖) ≤ 𝑋𝑖 = 𝑗)))
9291com23 86 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ*𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
93923adant2 1127 . . . . . . . . . . . . 13 ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → ((𝑃𝑖) ≤ 𝑋 → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9493com12 32 . . . . . . . . . . . 12 ((𝑃𝑖) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
95943ad2ant2 1130 . . . . . . . . . . 11 ((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗)))
9695imp 409 . . . . . . . . . 10 (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → 𝑖 = 𝑗))
9796com12 32 . . . . . . . . 9 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ (𝑃‘(𝑗 + 1)) ≤ (𝑃𝑖)) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9880, 97syldan 593 . . . . . . . 8 (((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) ∧ 𝑗 < 𝑖) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
9998expcom 416 . . . . . . 7 (𝑗 < 𝑖 → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10076, 77, 993jaoi 1423 . . . . . 6 ((𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖) → ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
10153, 100mpcom 38 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → (((𝑋 ∈ ℝ* ∧ (𝑃𝑖) ≤ 𝑋𝑋 < (𝑃‘(𝑖 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑃𝑗) ≤ 𝑋𝑋 < (𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
10245, 101sylbid 242 . . . 4 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0..^𝑀))) → ((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
103102ralrimivva 3193 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
104103adantr 483 . 2 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗))
105 fveq2 6672 . . . . 5 (𝑖 = 𝑗 → (𝑃𝑖) = (𝑃𝑗))
106 fvoveq1 7181 . . . . 5 (𝑖 = 𝑗 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑗 + 1)))
107105, 106oveq12d 7176 . . . 4 (𝑖 = 𝑗 → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) = ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1))))
108107eleq2d 2900 . . 3 (𝑖 = 𝑗 → (𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))))
109108reu4 3724 . 2 (∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ ∀𝑖 ∈ (0..^𝑀)∀𝑗 ∈ (0..^𝑀)((𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ∧ 𝑋 ∈ ((𝑃𝑗)[,)(𝑃‘(𝑗 + 1)))) → 𝑖 = 𝑗)))
11020, 104, 109sylanbrc 585 1 ((𝜑𝑋 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  ∃!wreu 3142   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cle 10678  cn 11640  [,)cico 12743  ...cfz 12895  ..^cfzo 13036  RePartciccp 43580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-ico 12747  df-fz 12896  df-fzo 13037  df-iccp 43581
This theorem is referenced by:  iccpartdisj  43604
  Copyright terms: Public domain W3C validator