Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllysconn Structured version   Visualization version   GIF version

Theorem iccllysconn 31560
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllysconn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)

Proof of Theorem iccllysconn
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 811 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑥 ∈ (topGen‘ran (,)))
2 inss1 3976 . . . . . 6 (𝑥 ∩ (𝐴[,]𝐵)) ⊆ 𝑥
3 simprr 813 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))
42, 3sseldi 3742 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦𝑥)
5 tg2 20991 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
61, 4, 5syl2anc 696 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
7 ioof 12484 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 ffn 6206 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
9 ovelrn 6976 . . . . . . . 8 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
107, 8, 9mp2b 10 . . . . . . 7 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
11 inss1 3976 . . . . . . . . . . . 12 (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑧
12 simprrr 824 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
1311, 12syl5ss 3755 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥)
14 simprrl 823 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
15 simprl 811 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 = (𝑎(,)𝑏))
1615ineq1d 3956 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) = ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
1716oveq2d 6830 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
18 ioosconn 31557 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
19 ioossre 12448 . . . . . . . . . . . . . . . . 17 (𝑎(,)𝑏) ⊆ ℝ
20 eqid 2760 . . . . . . . . . . . . . . . . . . 19 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))
2120resconn 31556 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn))
22 reconn 22852 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2321, 22bitrd 268 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
2518, 24mpbi 220 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)
26 inss1 3976 . . . . . . . . . . . . . . . 16 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏)
27 ssralv 3807 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2827ralimdv 3101 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
29 ssralv 3807 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3028, 29syld 47 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
3225, 31mp1i 13 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
33 inss2 3977 . . . . . . . . . . . . . . 15 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵)
34 iccconn 22854 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
35 iccssre 12468 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
36 reconn 22852 . . . . . . . . . . . . . . . . . 18 ((𝐴[,]𝐵) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3834, 37mpbid 222 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
3938ad2antrr 764 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
40 ssralv 3807 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4140ralimdv 3101 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
42 ssralv 3807 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4341, 42syld 47 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4433, 39, 43mpsyl 68 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
45 ssin 3978 . . . . . . . . . . . . . . . 16 (((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
46452ralbii 3119 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
47 r19.26-2 3203 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4846, 47bitr3i 266 . . . . . . . . . . . . . 14 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4932, 44, 48sylanbrc 701 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5026, 19sstri 3753 . . . . . . . . . . . . . 14 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ
51 eqid 2760 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5251resconn 31556 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn))
53 reconn 22852 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5452, 53bitrd 268 . . . . . . . . . . . . . 14 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5550, 54ax-mp 5 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5649, 55sylibr 224 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn)
5717, 56eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)
5813, 14, 573jca 1123 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
5958exp32 632 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6059rexlimdvw 3172 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6160rexlimdvw 3172 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6210, 61syl5bi 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 ∈ ran (,) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6362reximdvai 3153 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
64 retopbas 22785 . . . . . 6 ran (,) ∈ TopBases
65 bastg 20992 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
66 ssrexv 3808 . . . . . 6 (ran (,) ⊆ (topGen‘ran (,)) → (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
6764, 65, 66mp2b 10 . . . . 5 (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
6863, 67syl6 35 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
696, 68mpd 15 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7069ralrimivva 3109 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
71 retop 22786 . . 3 (topGen‘ran (,)) ∈ Top
72 ovex 6842 . . 3 (𝐴[,]𝐵) ∈ V
73 subislly 21506 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
7471, 72, 73mp2an 710 . 2 (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7570, 74sylibr 224 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  Vcvv 3340  cin 3714  wss 3715  𝒫 cpw 4302   × cxp 5264  ran crn 5267   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  cr 10147  *cxr 10285  (,)cioo 12388  [,]cicc 12391  t crest 16303  topGenctg 16320  Topctop 20920  TopBasesctb 20971  Conncconn 21436  Locally clly 21489  SConncsconn 31530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-cn 21253  df-cnp 21254  df-conn 21437  df-lly 21491  df-tx 21587  df-hmeo 21780  df-xms 22346  df-ms 22347  df-tms 22348  df-ii 22901  df-htpy 22990  df-phtpy 22991  df-phtpc 23012  df-pconn 31531  df-sconn 31532
This theorem is referenced by:  iillysconn  31563
  Copyright terms: Public domain W3C validator