![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartgtl | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartgtl | ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | elnnuz 11915 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
3 | 1, 2 | sylib 208 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
4 | fzisfzounsn 12772 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) |
6 | 5 | eleq2d 2823 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀}))) |
7 | elun 3894 | . . . . 5 ⊢ (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
9 | velsn 4335 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
11 | 10 | orbi2d 740 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
12 | 6, 8, 11 | 3bitrd 294 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
13 | fveq2 6350 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
14 | 13 | breq2d 4814 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑖))) |
15 | 14 | rspccv 3444 | . . . . . 6 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
16 | iccpartgtprec.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
17 | 1, 16 | iccpartigtl 41867 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
18 | 15, 17 | syl11 33 | . . . . 5 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
19 | 1, 16 | iccpartlt 41868 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
20 | 19 | adantl 473 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
21 | fveq2 6350 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
22 | 21 | adantr 472 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
23 | 20, 22 | breqtrrd 4830 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑖)) |
24 | 23 | ex 449 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
25 | 18, 24 | jaoi 393 | . . . 4 ⊢ ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
26 | 25 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
27 | 12, 26 | sylbid 230 | . 2 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
28 | 27 | ralrimiv 3101 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∪ cun 3711 {csn 4319 class class class wbr 4802 ‘cfv 6047 (class class class)co 6811 0cc0 10126 1c1 10127 < clt 10264 ℕcn 11210 ℤ≥cuz 11877 ...cfz 12517 ..^cfzo 12657 RePartciccp 41857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-map 8023 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-n0 11483 df-z 11568 df-uz 11878 df-fz 12518 df-fzo 12658 df-iccp 41858 |
This theorem is referenced by: iccpartgel 41873 |
Copyright terms: Public domain | W3C validator |