Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtprec Structured version   Visualization version   GIF version

Theorem iccpartgtprec 40670
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartgtprec.i (𝜑𝐼 ∈ (1...𝑀))
Assertion
Ref Expression
iccpartgtprec (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))

Proof of Theorem iccpartgtprec
StepHypRef Expression
1 iccpartgtprec.m . . . 4 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpartgtprec.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑀))
41nnzd 11428 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 fzval3 12480 . . . . . . . 8 (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1)))
65eleq2d 2684 . . . . . . 7 (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
83, 7mpbid 222 . . . . 5 (𝜑𝐼 ∈ (1..^(𝑀 + 1)))
91nncnd 10983 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
10 pncan1 10401 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀)
119, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1211eqcomd 2627 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
1312oveq2d 6623 . . . . . . 7 (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1)))
1413eleq2d 2684 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
15 elfzelz 12287 . . . . . . . 8 (𝐼 ∈ (1...𝑀) → 𝐼 ∈ ℤ)
163, 15syl 17 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
174peano2zd 11432 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
18 elfzom1b 12511 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1916, 17, 18syl2anc 692 . . . . . 6 (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
2014, 19bitr4d 271 . . . . 5 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
218, 20mpbird 247 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^𝑀))
22 iccpartimp 40667 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
231, 2, 21, 22syl3anc 1323 . . 3 (𝜑 → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
2423simprd 479 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))
2516zcnd 11430 . . . . 5 (𝜑𝐼 ∈ ℂ)
26 npcan1 10402 . . . . 5 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
2725, 26syl 17 . . . 4 (𝜑 → ((𝐼 − 1) + 1) = 𝐼)
2827eqcomd 2627 . . 3 (𝜑𝐼 = ((𝐼 − 1) + 1))
2928fveq2d 6154 . 2 (𝜑 → (𝑃𝐼) = (𝑃‘((𝐼 − 1) + 1)))
3024, 29breqtrrd 4643 1 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4615  cfv 5849  (class class class)co 6607  𝑚 cmap 7805  cc 9881  0cc0 9883  1c1 9884   + caddc 9886  *cxr 10020   < clt 10021  cmin 10213  cn 10967  cz 11324  ...cfz 12271  ..^cfzo 12409  RePartciccp 40663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-iccp 40664
This theorem is referenced by:  iccpartipre  40671  iccpartiltu  40672
  Copyright terms: Public domain W3C validator