Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiun Structured version   Visualization version   GIF version

Theorem iccpartiun 43601
Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiun (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiun
Dummy variables 𝑗 𝑘 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartiun.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccelpart 43600 . . . . . 6 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
4 fveq1 6671 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
5 fveq1 6671 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
64, 5oveq12d 7176 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
76eleq2d 2900 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
8 fveq1 6671 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
9 fveq1 6671 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
108, 9oveq12d 7176 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1110eleq2d 2900 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1211rexbidv 3299 . . . . . . . . 9 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
137, 12imbi12d 347 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1413rspcva 3623 . . . . . . 7 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514expcom 416 . . . . . 6 (∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
162, 3, 153syl 18 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
171, 16mpd 15 . . . 4 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
18 nnnn0 11907 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
19 0elfz 13007 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 18, 193syl 18 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑀))
212, 1, 20iccpartxr 43586 . . . . . . . . 9 (𝜑 → (𝑃‘0) ∈ ℝ*)
22 nn0fz0 13008 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
2322biimpi 218 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
242, 18, 233syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
252, 1, 24iccpartxr 43586 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2621, 25jca 514 . . . . . . . 8 (𝜑 → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
2726adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
28 elfzofz 13056 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
292, 1iccpartgel 43596 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
30 fveq2 6672 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
3130breq2d 5080 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
3231rspcva 3623 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗)) → (𝑃‘0) ≤ (𝑃𝑖))
3328, 29, 32syl2anr 598 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
34 fzofzp1 13137 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
352, 1iccpartleu 43595 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀))
36 fveq2 6672 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
3736breq1d 5078 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3837rspcva 3623 . . . . . . . 8 (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
3934, 35, 38syl2anr 598 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
40 icossico 12809 . . . . . . 7 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4127, 33, 39, 40syl12anc 834 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4241sseld 3968 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4342rexlimdva 3286 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4417, 43impbid 214 . . 3 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 eliun 4925 . . 3 (𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4644, 45syl6bbr 291 . 2 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ 𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4746eqrdv 2821 1 (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938   ciun 4921   class class class wbr 5068  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542  *cxr 10676  cle 10678  cn 11640  0cn0 11900  [,)cico 12743  ...cfz 12895  ..^cfzo 13036  RePartciccp 43580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-ico 12747  df-fz 12896  df-fzo 13037  df-iccp 43581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator