Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartleu Structured version   Visualization version   GIF version

Theorem iccpartleu 40688
Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartleu (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartleu
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 nnnn0 11251 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3 elnn0uz 11677 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 208 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
51, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
6 fzisfzounsn 12528 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
75, 6syl 17 . . . . 5 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
87eleq2d 2684 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀})))
9 elun 3736 . . . . 5 (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))
109a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})))
11 velsn 4169 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
1211a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1312orbi2d 737 . . . 4 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
148, 10, 133bitrd 294 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
15 iccpartgtprec.p . . . . . . . . . 10 (𝜑𝑃 ∈ (RePart‘𝑀))
161, 15iccpartltu 40685 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀))
17 fveq2 6153 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1817breq1d 4628 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
1918rspccv 3295 . . . . . . . . 9 (∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
2016, 19syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
2120imp 445 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) < (𝑃𝑀))
221adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
2315adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
24 fzossfz 12437 . . . . . . . . . . 11 (0..^𝑀) ⊆ (0...𝑀)
2524a1i 11 . . . . . . . . . 10 (𝜑 → (0..^𝑀) ⊆ (0...𝑀))
2625sselda 3587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2722, 23, 26iccpartxr 40679 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
28 nn0fz0 12386 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
292, 28sylib 208 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
301, 29syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
311, 15, 30iccpartxr 40679 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
3231adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
33 xrltle 11934 . . . . . . . 8 (((𝑃𝑖) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → ((𝑃𝑖) < (𝑃𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
3427, 32, 33syl2anc 692 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖) < (𝑃𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
3521, 34mpd 15 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ≤ (𝑃𝑀))
3635expcom 451 . . . . 5 (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
37 fveq2 6153 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
3837adantr 481 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
39 xrleid 11935 . . . . . . . . 9 ((𝑃𝑀) ∈ ℝ* → (𝑃𝑀) ≤ (𝑃𝑀))
4031, 39syl 17 . . . . . . . 8 (𝜑 → (𝑃𝑀) ≤ (𝑃𝑀))
4140adantl 482 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑀) ≤ (𝑃𝑀))
4238, 41eqbrtrd 4640 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) ≤ (𝑃𝑀))
4342ex 450 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4436, 43jaoi 394 . . . 4 ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4544com12 32 . . 3 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4614, 45sylbid 230 . 2 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4746ralrimiv 2960 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  cun 3557  wss 3559  {csn 4153   class class class wbr 4618  cfv 5852  (class class class)co 6610  0cc0 9888  *cxr 10025   < clt 10026  cle 10027  cn 10972  0cn0 11244  cuz 11639  ...cfz 12276  ..^cfzo 12414  RePartciccp 40673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-iccp 40674
This theorem is referenced by:  iccpartrn  40690  iccpartiun  40694  iccpartdisj  40697
  Copyright terms: Public domain W3C validator