Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartlt Structured version   Visualization version   GIF version

Theorem iccpartlt 43461
Description: If there is a partition, then the lower bound is strictly less than the upper bound. Corresponds to fourierdlem11 42280 in GS's mathbox. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartlt (𝜑 → (𝑃‘0) < (𝑃𝑀))

Proof of Theorem iccpartlt
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
3 lbfzo0 13065 . . . . . . . 8 (0 ∈ (0..^𝑀) ↔ 𝑀 ∈ ℕ)
41, 3sylibr 235 . . . . . . 7 (𝜑 → 0 ∈ (0..^𝑀))
5 iccpartimp 43454 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 0 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
61, 2, 4, 5syl3anc 1363 . . . . . 6 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘0) < (𝑃‘(0 + 1))))
76simprd 496 . . . . 5 (𝜑 → (𝑃‘0) < (𝑃‘(0 + 1)))
87adantl 482 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃‘(0 + 1)))
9 fveq2 6663 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
10 1e0p1 12128 . . . . . . 7 1 = (0 + 1)
1110fveq2i 6666 . . . . . 6 (𝑃‘1) = (𝑃‘(0 + 1))
129, 11syl6eq 2869 . . . . 5 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘(0 + 1)))
1312adantr 481 . . . 4 ((𝑀 = 1 ∧ 𝜑) → (𝑃𝑀) = (𝑃‘(0 + 1)))
148, 13breqtrrd 5085 . . 3 ((𝑀 = 1 ∧ 𝜑) → (𝑃‘0) < (𝑃𝑀))
1514ex 413 . 2 (𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
161, 2iccpartiltu 43459 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171, 2iccpartigtl 43460 . . . 4 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖))
18 1nn 11637 . . . . . . . . . 10 1 ∈ ℕ
1918a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ)
201adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ)
21 df-ne 3014 . . . . . . . . . . 11 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
221nnge1d 11673 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑀)
23 1red 10630 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
241nnred 11641 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℝ)
2523, 24ltlend 10773 . . . . . . . . . . . . 13 (𝜑 → (1 < 𝑀 ↔ (1 ≤ 𝑀𝑀 ≠ 1)))
2625biimprd 249 . . . . . . . . . . . 12 (𝜑 → ((1 ≤ 𝑀𝑀 ≠ 1) → 1 < 𝑀))
2722, 26mpand 691 . . . . . . . . . . 11 (𝜑 → (𝑀 ≠ 1 → 1 < 𝑀))
2821, 27syl5bir 244 . . . . . . . . . 10 (𝜑 → (¬ 𝑀 = 1 → 1 < 𝑀))
2928imp 407 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 < 𝑀)
30 elfzo1 13075 . . . . . . . . 9 (1 ∈ (1..^𝑀) ↔ (1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀))
3119, 20, 29, 30syl3anbrc 1335 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (1..^𝑀))
32 fveq2 6663 . . . . . . . . . 10 (𝑖 = 1 → (𝑃𝑖) = (𝑃‘1))
3332breq2d 5069 . . . . . . . . 9 (𝑖 = 1 → ((𝑃‘0) < (𝑃𝑖) ↔ (𝑃‘0) < (𝑃‘1)))
3433rspcv 3615 . . . . . . . 8 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3531, 34syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (𝑃‘0) < (𝑃‘1)))
3632breq1d 5067 . . . . . . . . . . 11 (𝑖 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃‘1) < (𝑃𝑀)))
3736rspcv 3615 . . . . . . . . . 10 (1 ∈ (1..^𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
3831, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘1) < (𝑃𝑀)))
39 nnnn0 11892 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40 0elfz 12992 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
411, 39, 403syl 18 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
421, 2, 41iccpartxr 43456 . . . . . . . . . . . 12 (𝜑 → (𝑃‘0) ∈ ℝ*)
4342adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘0) ∈ ℝ*)
442adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
45 1nn0 11901 . . . . . . . . . . . . . 14 1 ∈ ℕ0
4645a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ ℕ0)
471, 39syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
4847adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ∈ ℕ0)
4922adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ≤ 𝑀)
50 elfz2nn0 12986 . . . . . . . . . . . . 13 (1 ∈ (0...𝑀) ↔ (1 ∈ ℕ0𝑀 ∈ ℕ0 ∧ 1 ≤ 𝑀))
5146, 48, 49, 50syl3anbrc 1335 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 = 1) → 1 ∈ (0...𝑀))
5220, 44, 51iccpartxr 43456 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃‘1) ∈ ℝ*)
53 nn0fz0 12993 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
5439, 53sylib 219 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
561, 2, 55iccpartxr 43456 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑀) ∈ ℝ*)
5756adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑃𝑀) ∈ ℝ*)
58 xrlttr 12521 . . . . . . . . . . 11 (((𝑃‘0) ∈ ℝ* ∧ (𝑃‘1) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
5943, 52, 57, 58syl3anc 1363 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑀 = 1) → (((𝑃‘0) < (𝑃‘1) ∧ (𝑃‘1) < (𝑃𝑀)) → (𝑃‘0) < (𝑃𝑀)))
6059expcomd 417 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘1) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6138, 60syld 47 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → ((𝑃‘0) < (𝑃‘1) → (𝑃‘0) < (𝑃𝑀))))
6261com23 86 . . . . . . 7 ((𝜑 ∧ ¬ 𝑀 = 1) → ((𝑃‘0) < (𝑃‘1) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6335, 62syld 47 . . . . . 6 ((𝜑 ∧ ¬ 𝑀 = 1) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀))))
6463ex 413 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (𝑃‘0) < (𝑃𝑀)))))
6564com24 95 . . . 4 (𝜑 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) → (∀𝑖 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑖) → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))))
6616, 17, 65mp2d 49 . . 3 (𝜑 → (¬ 𝑀 = 1 → (𝑃‘0) < (𝑃𝑀)))
6766com12 32 . 2 𝑀 = 1 → (𝜑 → (𝑃‘0) < (𝑃𝑀)))
6815, 67pm2.61i 183 1 (𝜑 → (𝑃‘0) < (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135   class class class wbr 5057  cfv 6348  (class class class)co 7145  m cmap 8395  0cc0 10525  1c1 10526   + caddc 10528  *cxr 10662   < clt 10663  cle 10664  cn 11626  0cn0 11885  ...cfz 12880  ..^cfzo 13021  RePartciccp 43450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-iccp 43451
This theorem is referenced by:  iccpartltu  43462  iccpartgtl  43463  iccpartgt  43464
  Copyright terms: Public domain W3C validator