MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccpnfhmeo Structured version   Visualization version   GIF version

Theorem iccpnfhmeo 22791
Description: The defined bijection from [0, 1] to [0, +∞] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
iccpnfhmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
iccpnfhmeo.k 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
Assertion
Ref Expression
iccpnfhmeo (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))

Proof of Theorem iccpnfhmeo
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12294 . . . 4 (0[,]1) ⊆ ℝ*
2 xrltso 12012 . . . 4 < Or ℝ*
3 soss 5082 . . . 4 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . . 3 < Or (0[,]1)
5 iccssxr 12294 . . . . 5 (0[,]+∞) ⊆ ℝ*
6 soss 5082 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
75, 2, 6mp2 9 . . . 4 < Or (0[,]+∞)
8 sopo 5081 . . . 4 ( < Or (0[,]+∞) → < Po (0[,]+∞))
97, 8ax-mp 5 . . 3 < Po (0[,]+∞)
10 iccpnfhmeo.f . . . . . 6 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))))
1110iccpnfcnv 22790 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 1, (𝑦 / (1 + 𝑦)))))
1211simpli 473 . . . 4 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
13 f1ofo 6182 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1412, 13ax-mp 5 . . 3 𝐹:(0[,]1)–onto→(0[,]+∞)
15 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
16 1re 10077 . . . . . . . . . . . . 13 1 ∈ ℝ
1715, 16elicc2i 12277 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
1817simp1bi 1096 . . . . . . . . . . 11 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
19183ad2ant1 1102 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℝ)
2015, 16elicc2i 12277 . . . . . . . . . . . . 13 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤𝑤 ≤ 1))
2120simp1bi 1096 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ∈ ℝ)
22213ad2ant2 1103 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ℝ)
23 1red 10093 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ∈ ℝ)
24 simp3 1083 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
2520simp3bi 1098 . . . . . . . . . . . 12 (𝑤 ∈ (0[,]1) → 𝑤 ≤ 1)
26253ad2ant2 1103 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ≤ 1)
2719, 22, 23, 24, 26ltletrd 10235 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 < 1)
2819, 27gtned 10210 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 1 ≠ 𝑧)
2928necomd 2878 . . . . . . . 8 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ≠ 1)
30 ifnefalse 4131 . . . . . . . 8 (𝑧 ≠ 1 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
3129, 30syl 17 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) = (𝑧 / (1 − 𝑧)))
32 breq2 4689 . . . . . . . 8 (+∞ = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < +∞ ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
33 breq2 4689 . . . . . . . 8 ((𝑤 / (1 − 𝑤)) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) → ((𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)) ↔ (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
34 resubcl 10383 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (1 − 𝑧) ∈ ℝ)
3516, 19, 34sylancr 696 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ∈ ℝ)
36 ax-1cn 10032 . . . . . . . . . . . . 13 1 ∈ ℂ
3719recnd 10106 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ℂ)
38 subeq0 10345 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) = 0 ↔ 1 = 𝑧))
3938necon3bid 2867 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4036, 37, 39sylancr 696 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → ((1 − 𝑧) ≠ 0 ↔ 1 ≠ 𝑧))
4128, 40mpbird 247 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (1 − 𝑧) ≠ 0)
4219, 35, 41redivcld 10891 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) ∈ ℝ)
43 ltpnf 11992 . . . . . . . . . 10 ((𝑧 / (1 − 𝑧)) ∈ ℝ → (𝑧 / (1 − 𝑧)) < +∞)
4442, 43syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < +∞)
4544adantr 480 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < +∞)
46 simpl3 1086 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 < 𝑤)
47 eqid 2651 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
48 eqid 2651 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4947, 48icopnfhmeo 22789 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t (0[,)1))Homeo((TopOpen‘ℂfld) ↾t (0[,)+∞))))
5049simpli 473 . . . . . . . . . . . 12 (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞))
5150a1i 11 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)))
52 simp1 1081 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,]1))
53 0xr 10124 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
5416rexri 10135 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
55 0le1 10589 . . . . . . . . . . . . . . . . . . 19 0 ≤ 1
56 snunico 12337 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
5753, 54, 55, 56mp3an 1464 . . . . . . . . . . . . . . . . . 18 ((0[,)1) ∪ {1}) = (0[,]1)
5852, 57syl6eleqr 2741 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ ((0[,)1) ∪ {1}))
59 elun 3786 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((0[,)1) ∪ {1}) ↔ (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
6058, 59sylib 208 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ∈ (0[,)1) ∨ 𝑧 ∈ {1}))
6160ord 391 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 ∈ {1}))
62 elsni 4227 . . . . . . . . . . . . . . 15 (𝑧 ∈ {1} → 𝑧 = 1)
6361, 62syl6 35 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑧 ∈ (0[,)1) → 𝑧 = 1))
6463necon1ad 2840 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 ≠ 1 → 𝑧 ∈ (0[,)1)))
6529, 64mpd 15 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (0[,)1))
6665adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑧 ∈ (0[,)1))
67 simp2 1082 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (0[,]1))
6867, 57syl6eleqr 2741 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → 𝑤 ∈ ((0[,)1) ∪ {1}))
69 elun 3786 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((0[,)1) ∪ {1}) ↔ (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
7068, 69sylib 208 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑤 ∈ (0[,)1) ∨ 𝑤 ∈ {1}))
7170ord 391 . . . . . . . . . . . . . 14 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 ∈ {1}))
72 elsni 4227 . . . . . . . . . . . . . 14 (𝑤 ∈ {1} → 𝑤 = 1)
7371, 72syl6 35 . . . . . . . . . . . . 13 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 ∈ (0[,)1) → 𝑤 = 1))
7473con1d 139 . . . . . . . . . . . 12 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (¬ 𝑤 = 1 → 𝑤 ∈ (0[,)1)))
7574imp 444 . . . . . . . . . . 11 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → 𝑤 ∈ (0[,)1))
76 isorel 6616 . . . . . . . . . . 11 (((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥))) Isom < , < ((0[,)1), (0[,)+∞)) ∧ (𝑧 ∈ (0[,)1) ∧ 𝑤 ∈ (0[,)1))) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7751, 66, 75, 76syl12anc 1364 . . . . . . . . . 10 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 < 𝑤 ↔ ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤)))
7846, 77mpbid 222 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) < ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤))
79 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
80 oveq2 6698 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (1 − 𝑥) = (1 − 𝑧))
8179, 80oveq12d 6708 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 / (1 − 𝑥)) = (𝑧 / (1 − 𝑧)))
82 ovex 6718 . . . . . . . . . . 11 (𝑧 / (1 − 𝑧)) ∈ V
8381, 47, 82fvmpt 6321 . . . . . . . . . 10 (𝑧 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
8466, 83syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑧) = (𝑧 / (1 − 𝑧)))
85 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑤𝑥 = 𝑤)
86 oveq2 6698 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (1 − 𝑥) = (1 − 𝑤))
8785, 86oveq12d 6708 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 / (1 − 𝑥)) = (𝑤 / (1 − 𝑤)))
88 ovex 6718 . . . . . . . . . . 11 (𝑤 / (1 − 𝑤)) ∈ V
8987, 47, 88fvmpt 6321 . . . . . . . . . 10 (𝑤 ∈ (0[,)1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
9075, 89syl 17 . . . . . . . . 9 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → ((𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))‘𝑤) = (𝑤 / (1 − 𝑤)))
9178, 84, 903brtr3d 4716 . . . . . . . 8 (((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) ∧ ¬ 𝑤 = 1) → (𝑧 / (1 − 𝑧)) < (𝑤 / (1 − 𝑤)))
9232, 33, 45, 91ifbothda 4156 . . . . . . 7 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → (𝑧 / (1 − 𝑧)) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
9331, 92eqbrtrd 4707 . . . . . 6 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1) ∧ 𝑧 < 𝑤) → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
94933expia 1286 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
95 eqeq1 2655 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 1 ↔ 𝑧 = 1))
9695, 81ifbieq2d 4144 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
97 pnfex 10131 . . . . . . . 8 +∞ ∈ V
9897, 82ifex 4189 . . . . . . 7 if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) ∈ V
9996, 10, 98fvmpt 6321 . . . . . 6 (𝑧 ∈ (0[,]1) → (𝐹𝑧) = if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))))
100 eqeq1 2655 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 1 ↔ 𝑤 = 1))
101100, 87ifbieq2d 4144 . . . . . . 7 (𝑥 = 𝑤 → if(𝑥 = 1, +∞, (𝑥 / (1 − 𝑥))) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10297, 88ifex 4189 . . . . . . 7 if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))) ∈ V
103101, 10, 102fvmpt 6321 . . . . . 6 (𝑤 ∈ (0[,]1) → (𝐹𝑤) = if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤))))
10499, 103breqan12d 4701 . . . . 5 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → ((𝐹𝑧) < (𝐹𝑤) ↔ if(𝑧 = 1, +∞, (𝑧 / (1 − 𝑧))) < if(𝑤 = 1, +∞, (𝑤 / (1 − 𝑤)))))
10594, 104sylibrd 249 . . . 4 ((𝑧 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) → (𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))
106105rgen2a 3006 . . 3 𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤))
107 soisoi 6618 . . 3 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑧 ∈ (0[,]1)∀𝑤 ∈ (0[,]1)(𝑧 < 𝑤 → (𝐹𝑧) < (𝐹𝑤)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 9, 14, 106, 107mp4an 709 . 2 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
109 letsr 17274 . . . . . 6 ≤ ∈ TosetRel
110109elexi 3244 . . . . 5 ≤ ∈ V
111110inex1 4832 . . . 4 ( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V
112110inex1 4832 . . . 4 ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V
113 leiso 13281 . . . . . . . 8 (((0[,]1) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))))
1141, 5, 113mp2an 708 . . . . . . 7 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)))
115108, 114mpbi 220 . . . . . 6 𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞))
116 isores1 6624 . . . . . 6 (𝐹 Isom ≤ , ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)))
117115, 116mpbi 220 . . . . 5 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞))
118 isores2 6623 . . . . 5 (𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ≤ ((0[,]1), (0[,]+∞)) ↔ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞)))
119117, 118mpbi 220 . . . 4 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))
120 tsrps 17268 . . . . . . . 8 ( ≤ ∈ TosetRel → ≤ ∈ PosetRel)
121109, 120ax-mp 5 . . . . . . 7 ≤ ∈ PosetRel
122 ledm 17271 . . . . . . . 8 * = dom ≤
123122psssdm 17263 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]1) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1))
124121, 1, 123mp2an 708 . . . . . 6 dom ( ≤ ∩ ((0[,]1) × (0[,]1))) = (0[,]1)
125124eqcomi 2660 . . . . 5 (0[,]1) = dom ( ≤ ∩ ((0[,]1) × (0[,]1)))
126122psssdm 17263 . . . . . . 7 (( ≤ ∈ PosetRel ∧ (0[,]+∞) ⊆ ℝ*) → dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞))
127121, 5, 126mp2an 708 . . . . . 6 dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) = (0[,]+∞)
128127eqcomi 2660 . . . . 5 (0[,]+∞) = dom ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))
129125, 128ordthmeo 21653 . . . 4 ((( ≤ ∩ ((0[,]1) × (0[,]1))) ∈ V ∧ ( ≤ ∩ ((0[,]+∞) × (0[,]+∞))) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ((0[,]1) × (0[,]1))), ( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))((0[,]1), (0[,]+∞))) → 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))))
130111, 112, 119, 129mp3an 1464 . . 3 𝐹 ∈ ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
131 dfii5 22735 . . . 4 II = (ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))
132 iccpnfhmeo.k . . . . 5 𝐾 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
133 ordtresticc 21075 . . . . 5 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
134132, 133eqtri 2673 . . . 4 𝐾 = (ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞))))
135131, 134oveq12i 6702 . . 3 (IIHomeo𝐾) = ((ordTop‘( ≤ ∩ ((0[,]1) × (0[,]1))))Homeo(ordTop‘( ≤ ∩ ((0[,]+∞) × (0[,]+∞)))))
136130, 135eleqtrri 2729 . 2 𝐹 ∈ (IIHomeo𝐾)
137108, 136pm3.2i 470 1 (𝐹 Isom < , < ((0[,]1), (0[,]+∞)) ∧ 𝐹 ∈ (IIHomeo𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  Vcvv 3231  cun 3605  cin 3606  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762   Po wpo 5062   Or wor 5063   × cxp 5141  ccnv 5142  dom cdm 5143  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926   Isom wiso 5927  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  [,)cico 12215  [,]cicc 12216  t crest 16128  TopOpenctopn 16129  ordTopcordt 16206  PosetRelcps 17245   TosetRel ctsr 17246  fldccnfld 19794  Homeochmeo 21604  IIcii 22725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-ordt 16208  df-ps 17247  df-tsr 17248  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-hmeo 21606  df-xms 22172  df-ms 22173  df-ii 22727
This theorem is referenced by:  xrhmeo  22792  xrge0hmph  30106
  Copyright terms: Public domain W3C validator