![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssioo2 | Structured version Visualization version GIF version |
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.) |
Ref | Expression |
---|---|
iccssioo2 | ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4029 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ≠ ∅) |
3 | ndmioo 12316 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = ∅) | |
4 | 3 | necon1ai 2923 | . . 3 ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
6 | eliooord 12347 | . . . 4 ⊢ (𝐶 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) | |
7 | 6 | adantr 472 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
8 | 7 | simpld 477 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝐶) |
9 | eliooord 12347 | . . . 4 ⊢ (𝐷 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) | |
10 | 9 | adantl 473 | . . 3 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝐷 ∧ 𝐷 < 𝐵)) |
11 | 10 | simprd 482 | . 2 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → 𝐷 < 𝐵) |
12 | iccssioo 12356 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴 < 𝐶 ∧ 𝐷 < 𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) | |
13 | 5, 8, 11, 12 | syl12anc 1437 | 1 ⊢ ((𝐶 ∈ (𝐴(,)𝐵) ∧ 𝐷 ∈ (𝐴(,)𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2103 ≠ wne 2896 ⊆ wss 3680 ∅c0 4023 class class class wbr 4760 (class class class)co 6765 ℝ*cxr 10186 < clt 10187 (,)cioo 12289 [,]cicc 12292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-pre-lttri 10123 ax-pre-lttrn 10124 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-1st 7285 df-2nd 7286 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-ioo 12293 df-icc 12296 |
This theorem is referenced by: dvivthlem1 23891 dvivthlem2 23892 amgmlem 24836 ioosconn 31457 amgmwlem 42978 |
Copyright terms: Public domain | W3C validator |