Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icocncflimc Structured version   Visualization version   GIF version

Theorem icocncflimc 39403
Description: Limit at the lower bound, of a continuous function defined on a left closed right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icocncflimc.a (𝜑𝐴 ∈ ℝ)
icocncflimc.b (𝜑𝐵 ∈ ℝ*)
icocncflimc.altb (𝜑𝐴 < 𝐵)
icocncflimc.f (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
Assertion
Ref Expression
icocncflimc (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))

Proof of Theorem icocncflimc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icocncflimc.f . . 3 (𝜑𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ))
2 icocncflimc.a . . . . 5 (𝜑𝐴 ∈ ℝ)
32rexrd 10033 . . . 4 (𝜑𝐴 ∈ ℝ*)
4 icocncflimc.b . . . 4 (𝜑𝐵 ∈ ℝ*)
52leidd 10538 . . . 4 (𝜑𝐴𝐴)
6 icocncflimc.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 4, 3, 5, 6elicod 12166 . . 3 (𝜑𝐴 ∈ (𝐴[,)𝐵))
81, 7cnlimci 23559 . 2 (𝜑 → (𝐹𝐴) ∈ (𝐹 lim 𝐴))
9 cncfrss 22602 . . . . . . . 8 (𝐹 ∈ ((𝐴[,)𝐵)–cn→ℂ) → (𝐴[,)𝐵) ⊆ ℂ)
101, 9syl 17 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) ⊆ ℂ)
11 ssid 3603 . . . . . . 7 ℂ ⊆ ℂ
12 eqid 2621 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
13 eqid 2621 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
14 eqid 2621 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
1512, 13, 14cncfcn 22620 . . . . . . 7 (((𝐴[,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1610, 11, 15sylancl 693 . . . . . 6 (𝜑 → ((𝐴[,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
171, 16eleqtrd 2700 . . . . 5 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
1812cnfldtopon 22496 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1918a1i 11 . . . . . . 7 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
20 resttopon 20875 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴[,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2119, 10, 20syl2anc 692 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)))
2212cnfldtop 22497 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
23 unicntop 38687 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
2423restid 16015 . . . . . . . 8 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
2522, 24ax-mp 5 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
2625cnfldtopon 22496 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)
27 cncnp 20994 . . . . . 6 ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ (TopOn‘(𝐴[,)𝐵)) ∧ ((TopOpen‘ℂfld) ↾t ℂ) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2821, 26, 27sylancl 693 . . . . 5 (𝜑 → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) Cn ((TopOpen‘ℂfld) ↾t ℂ)) ↔ (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥))))
2917, 28mpbid 222 . . . 4 (𝜑 → (𝐹:(𝐴[,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴[,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) CnP ((TopOpen‘ℂfld) ↾t ℂ))‘𝑥)))
3029simpld 475 . . 3 (𝜑𝐹:(𝐴[,)𝐵)⟶ℂ)
31 ioossico 12204 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
3231a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵))
33 eqid 2621 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))
342recnd 10012 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3523ntrtop 20784 . . . . . . . . 9 ((TopOpen‘ℂfld) ∈ Top → ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ)
3622, 35ax-mp 5 . . . . . . . 8 ((int‘(TopOpen‘ℂfld))‘ℂ) = ℂ
37 undif 4021 . . . . . . . . . . 11 ((𝐴[,)𝐵) ⊆ ℂ ↔ ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3810, 37sylib 208 . . . . . . . . . 10 (𝜑 → ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))) = ℂ)
3938eqcomd 2627 . . . . . . . . 9 (𝜑 → ℂ = ((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵))))
4039fveq2d 6152 . . . . . . . 8 (𝜑 → ((int‘(TopOpen‘ℂfld))‘ℂ) = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4136, 40syl5eqr 2669 . . . . . . 7 (𝜑 → ℂ = ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4234, 41eleqtrd 2700 . . . . . 6 (𝜑𝐴 ∈ ((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))))
4342, 7elind 3776 . . . . 5 (𝜑𝐴 ∈ (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4422a1i 11 . . . . . 6 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
45 ssid 3603 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)
4645a1i 11 . . . . . 6 (𝜑 → (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵))
4723, 13restntr 20896 . . . . . 6 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℂ ∧ (𝐴[,)𝐵) ⊆ (𝐴[,)𝐵)) → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4844, 10, 46, 47syl3anc 1323 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = (((int‘(TopOpen‘ℂfld))‘((𝐴[,)𝐵) ∪ (ℂ ∖ (𝐴[,)𝐵)))) ∩ (𝐴[,)𝐵)))
4943, 48eleqtrrd 2701 . . . 4 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)))
507snssd 4309 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ (𝐴[,)𝐵))
51 ssequn2 3764 . . . . . . . . 9 ({𝐴} ⊆ (𝐴[,)𝐵) ↔ ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5250, 51sylib 208 . . . . . . . 8 (𝜑 → ((𝐴[,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5352eqcomd 2627 . . . . . . 7 (𝜑 → (𝐴[,)𝐵) = ((𝐴[,)𝐵) ∪ {𝐴}))
5453oveq2d 6620 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))
5554fveq2d 6152 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴}))))
56 snunioo1 39146 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
573, 4, 6, 56syl3anc 1323 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
5857eqcomd 2627 . . . . 5 (𝜑 → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
5955, 58fveq12d 6154 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))‘(𝐴[,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6049, 59eleqtrd 2700 . . 3 (𝜑𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,)𝐵) ∪ {𝐴})))‘((𝐴(,)𝐵) ∪ {𝐴})))
6130, 32, 10, 12, 33, 60limcres 23556 . 2 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) = (𝐹 lim 𝐴))
628, 61eleqtrrd 2701 1 (𝜑 → (𝐹𝐴) ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  cdif 3552  cun 3553  cin 3554  wss 3555  {csn 4148   class class class wbr 4613  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  *cxr 10017   < clt 10018  (,)cioo 12117  [,)cico 12119  t crest 16002  TopOpenctopn 16003  fldccnfld 19665  Topctop 20617  TopOnctopon 20618  intcnt 20731   Cn ccn 20938   CnP ccnp 20939  cnccncf 22587   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-ntr 20734  df-cn 20941  df-cnp 20942  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536
This theorem is referenced by:  fourierdlem46  39673
  Copyright terms: Public domain W3C validator