Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icorempt2 Structured version   Visualization version   GIF version

Theorem icorempt2 33170
Description: Closed-below, open-above intervals of reals. (Contributed by ML, 26-Jul-2020.)
Hypothesis
Ref Expression
icorempt2.1 𝐹 = ([,) ↾ (ℝ × ℝ))
Assertion
Ref Expression
icorempt2 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem icorempt2
StepHypRef Expression
1 icorempt2.1 . 2 𝐹 = ([,) ↾ (ℝ × ℝ))
2 df-ico 12166 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
32reseq1i 5381 . . 3 ([,) ↾ (ℝ × ℝ)) = ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ))
4 ressxr 10068 . . . 4 ℝ ⊆ ℝ*
5 resmpt2 6743 . . . 4 ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}))
64, 4, 5mp2an 707 . . 3 ((𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
73, 6eqtri 2642 . 2 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
8 nfv 1841 . . . 4 𝑧(𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)
9 nfrab1 3117 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
10 nfrab1 3117 . . . 4 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}
11 rabid 3111 . . . . . . . 8 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)))
12 rexr 10070 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
13 nltmnf 11948 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
1412, 13syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ¬ 𝑥 < -∞)
15 renemnf 10073 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → 𝑥 ≠ -∞)
1615neneqd 2796 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → ¬ 𝑥 = -∞)
1714, 16jca 554 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞))
18 pm4.56 516 . . . . . . . . . . . . . . 15 ((¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞) ↔ ¬ (𝑥 < -∞ ∨ 𝑥 = -∞))
1917, 18sylib 208 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ¬ (𝑥 < -∞ ∨ 𝑥 = -∞))
20 mnfxr 10081 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
21 xrleloe 11962 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞)))
2212, 20, 21sylancl 693 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑥 ≤ -∞ ↔ (𝑥 < -∞ ∨ 𝑥 = -∞)))
2319, 22mtbird 315 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ¬ 𝑥 ≤ -∞)
24 breq2 4648 . . . . . . . . . . . . . 14 (𝑧 = -∞ → (𝑥𝑧𝑥 ≤ -∞))
2524notbid 308 . . . . . . . . . . . . 13 (𝑧 = -∞ → (¬ 𝑥𝑧 ↔ ¬ 𝑥 ≤ -∞))
2623, 25syl5ibrcom 237 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑧 = -∞ → ¬ 𝑥𝑧))
2726con2d 129 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥𝑧 → ¬ 𝑧 = -∞))
28 rexr 10070 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
29 pnfnlt 11947 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
30 breq1 4647 . . . . . . . . . . . . . . 15 (𝑧 = +∞ → (𝑧 < 𝑦 ↔ +∞ < 𝑦))
3130notbid 308 . . . . . . . . . . . . . 14 (𝑧 = +∞ → (¬ 𝑧 < 𝑦 ↔ ¬ +∞ < 𝑦))
3229, 31syl5ibrcom 237 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (𝑧 = +∞ → ¬ 𝑧 < 𝑦))
3332con2d 129 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑧 < 𝑦 → ¬ 𝑧 = +∞))
3428, 33syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (𝑧 < 𝑦 → ¬ 𝑧 = +∞))
3527, 34im2anan9 879 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥𝑧𝑧 < 𝑦) → (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)))
3635anim2d 588 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)) → (𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞))))
37 renepnf 10072 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → 𝑧 ≠ +∞)
3837neneqd 2796 . . . . . . . . . . 11 (𝑧 ∈ ℝ → ¬ 𝑧 = +∞)
3938pm4.71i 663 . . . . . . . . . 10 (𝑧 ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
40 xrnemnf 11936 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑧 ≠ -∞) ↔ (𝑧 ∈ ℝ ∨ 𝑧 = +∞))
4140anbi1i 730 . . . . . . . . . . 11 (((𝑧 ∈ ℝ*𝑧 ≠ -∞) ∧ ¬ 𝑧 = +∞) ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∧ ¬ 𝑧 = +∞))
42 df-ne 2792 . . . . . . . . . . . . 13 (𝑧 ≠ -∞ ↔ ¬ 𝑧 = -∞)
4342anbi2i 729 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑧 ≠ -∞) ↔ (𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞))
4443anbi1i 730 . . . . . . . . . . 11 (((𝑧 ∈ ℝ*𝑧 ≠ -∞) ∧ ¬ 𝑧 = +∞) ↔ ((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞))
45 pm5.61 748 . . . . . . . . . . 11 (((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
4641, 44, 453bitr3i 290 . . . . . . . . . 10 (((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞))
47 anass 680 . . . . . . . . . 10 (((𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞) ∧ ¬ 𝑧 = +∞) ↔ (𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)))
4839, 46, 473bitr2ri 289 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞)) ↔ 𝑧 ∈ ℝ)
4936, 48syl6ib 241 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑥𝑧𝑧 < 𝑦)) → 𝑧 ∈ ℝ))
5011, 49syl5bi 232 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ ℝ))
5111simprbi 480 . . . . . . . 8 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑥𝑧𝑧 < 𝑦))
5251a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑥𝑧𝑧 < 𝑦)))
5350, 52jcad 555 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑦))))
54 rabid 3111 . . . . . 6 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑦)))
5553, 54syl6ibr 242 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
56 rabss2 3677 . . . . . . 7 (ℝ ⊆ ℝ* → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
574, 56ax-mp 5 . . . . . 6 {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} ⊆ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
5857sseli 3591 . . . . 5 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
5955, 58impbid1 215 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)}))
608, 9, 10, 59eqrd 3614 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
6160mpt2eq3ia 6705 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
621, 7, 613eqtri 2646 1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wne 2791  {crab 2913  wss 3567   class class class wbr 4644   × cxp 5102  cres 5106  cmpt2 6637  cr 9920  +∞cpnf 10056  -∞cmnf 10057  *cxr 10058   < clt 10059  cle 10060  [,)cico 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-pre-lttri 9995  ax-pre-lttrn 9996
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-oprab 6639  df-mpt2 6640  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-ico 12166
This theorem is referenced by:  icoreresf  33171  icoreval  33172
  Copyright terms: Public domain W3C validator