Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreunrn Structured version   Visualization version   GIF version

Theorem icoreunrn 32839
Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreunrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreunrn ℝ = 𝐼

Proof of Theorem icoreunrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10029 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2 peano2re 10153 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
3 rexr 10029 . . . . . . . 8 ((𝑥 + 1) ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
42, 3syl 17 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
5 ltp1 10805 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
6 lbico1 12170 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*𝑥 < (𝑥 + 1)) → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
71, 4, 5, 6syl3anc 1323 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
8 df-ov 6607 . . . . . 6 (𝑥[,)(𝑥 + 1)) = ([,)‘⟨𝑥, (𝑥 + 1)⟩)
97, 8syl6eleq 2708 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ([,)‘⟨𝑥, (𝑥 + 1)⟩))
10 opelxpi 5108 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
112, 10mpdan 701 . . . . . 6 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
12 fvres 6164 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
1311, 12syl 17 . . . . 5 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
149, 13eleqtrrd 2701 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩))
15 icoreresf 32832 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
1615fdmi 6009 . . . . . . 7 dom ([,) ↾ (ℝ × ℝ)) = (ℝ × ℝ)
1710, 16syl6eleqr 2709 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
182, 17mpdan 701 . . . . 5 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
19 ffun 6005 . . . . . . . 8 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → Fun ([,) ↾ (ℝ × ℝ)))
2015, 19ax-mp 5 . . . . . . 7 Fun ([,) ↾ (ℝ × ℝ))
21 fvelrn 6308 . . . . . . 7 ((Fun ([,) ↾ (ℝ × ℝ)) ∧ ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ))) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
2220, 21mpan 705 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
23 icoreunrn.1 . . . . . . 7 𝐼 = ([,) “ (ℝ × ℝ))
24 df-ima 5087 . . . . . . 7 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
2523, 24eqtri 2643 . . . . . 6 𝐼 = ran ([,) ↾ (ℝ × ℝ))
2622, 25syl6eleqr 2709 . . . . 5 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
2718, 26syl 17 . . . 4 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
28 elunii 4407 . . . 4 ((𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∧ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼) → 𝑥 𝐼)
2914, 27, 28syl2anc 692 . . 3 (𝑥 ∈ ℝ → 𝑥 𝐼)
3029ssriv 3587 . 2 ℝ ⊆ 𝐼
31 frn 6010 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ)
3215, 31ax-mp 5 . . . 4 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
3325, 32eqsstri 3614 . . 3 𝐼 ⊆ 𝒫 ℝ
34 uniss 4424 . . . 4 (𝐼 ⊆ 𝒫 ℝ → 𝐼 𝒫 ℝ)
35 unipw 4879 . . . 4 𝒫 ℝ = ℝ
3634, 35syl6sseq 3630 . . 3 (𝐼 ⊆ 𝒫 ℝ → 𝐼 ⊆ ℝ)
3733, 36ax-mp 5 . 2 𝐼 ⊆ ℝ
3830, 37eqssi 3599 1 ℝ = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wss 3555  𝒫 cpw 4130  cop 4154   cuni 4402   class class class wbr 4613   × cxp 5072  dom cdm 5074  ran crn 5075  cres 5076  cima 5077  Fun wfun 5841  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883  *cxr 10017   < clt 10018  [,)cico 12119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-ico 12123
This theorem is referenced by:  istoprelowl  32840  relowlssretop  32843  relowlpssretop  32844
  Copyright terms: Public domain W3C validator