Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreval Structured version   Visualization version   GIF version

Theorem icoreval 34633
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.)
Assertion
Ref Expression
icoreval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem icoreval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7313 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵))
2 breq1 5068 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
32anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝑦)))
43rabbidv 3480 . . 3 (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)})
5 breq2 5069 . . . . 5 (𝑦 = 𝐵 → (𝑧 < 𝑦𝑧 < 𝐵))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝐵)))
76rabbidv 3480 . . 3 (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
8 eqid 2821 . . . 4 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 34631 . . 3 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
10 reex 10627 . . . 4 ℝ ∈ V
1110rabex 5234 . . 3 {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ V
124, 7, 9, 11ovmpo 7309 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
131, 12eqtr3d 2858 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142   class class class wbr 5065   × cxp 5552  cres 5556  (class class class)co 7155  cr 10535   < clt 10674  cle 10675  [,)cico 12739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-pre-lttri 10610  ax-pre-lttrn 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-ico 12743
This theorem is referenced by:  icoreelrnab  34634  icoreelrn  34641  relowlssretop  34643
  Copyright terms: Public domain W3C validator