MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossre Structured version   Visualization version   GIF version

Theorem icossre 12447
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)

Proof of Theorem icossre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elico2 12430 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
21biimp3a 1581 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
32simp1d 1137 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
433expia 1115 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3750 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139  wss 3715   class class class wbr 4804  (class class class)co 6813  cr 10127  *cxr 10265   < clt 10266  cle 10267  [,)cico 12370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-ico 12374
This theorem is referenced by:  icoshftf1o  12488  ico01fl0  12814  rexico  14292  rlim3  14428  fprodge1  14925  ovolicopnf  23492  dvfsumrlim2  23994  tanord1  24482  chebbnd1  25360  chebbnd2  25365  dchrisumlem3  25379  pntpbnd1  25474  pntibndlem2  25479  sxbrsigalem0  30642  dya2iocress  30645  dya2iocucvr  30655  sitmcl  30722  tan2h  33714  icoopn  40254  limciccioolb  40356  ltmod  40373  limcresioolb  40378  limsupresre  40431  limsupresico  40435  liminfresico  40506  fourierdlem32  40859  fourierdlem46  40872  fourierdlem48  40874  fourierdlem93  40919  fouriersw  40951  fouriercn  40952  hoissre  41264  hoissrrn2  41298  hoidmv1lelem2  41312  ovnlecvr2  41330  hspdifhsp  41336  hoiqssbllem2  41343  hspmbllem2  41347  iinhoiicclem  41393
  Copyright terms: Public domain W3C validator