![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icoun | Structured version Visualization version GIF version |
Description: The union of end-to-end closed-below, open-above real intervals. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.) |
Ref | Expression |
---|---|
icoun | ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 12263 | . 2 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | xrlenlt 10184 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) | |
3 | xrltletr 12070 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝑤 < 𝐶)) | |
4 | xrletr 12071 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝑤) → 𝐴 ≤ 𝑤)) | |
5 | 1, 1, 2, 1, 3, 4 | ixxun 12273 | 1 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,)𝐵) ∪ (𝐵[,)𝐶)) = (𝐴[,)𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1564 ∈ wcel 2071 ∪ cun 3646 class class class wbr 4728 (class class class)co 6733 ℝ*cxr 10154 < clt 10155 ≤ cle 10156 [,)cico 12259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-8 2073 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-sep 4857 ax-nul 4865 ax-pow 4916 ax-pr 4979 ax-un 7034 ax-cnex 10073 ax-resscn 10074 ax-pre-lttri 10091 ax-pre-lttrn 10092 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-nel 2968 df-ral 2987 df-rex 2988 df-rab 2991 df-v 3274 df-sbc 3510 df-csb 3608 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-nul 3992 df-if 4163 df-pw 4236 df-sn 4254 df-pr 4256 df-op 4260 df-uni 4513 df-br 4729 df-opab 4789 df-mpt 4806 df-id 5096 df-po 5107 df-so 5108 df-xp 5192 df-rel 5193 df-cnv 5194 df-co 5195 df-dm 5196 df-rn 5197 df-res 5198 df-ima 5199 df-iota 5932 df-fun 5971 df-fn 5972 df-f 5973 df-f1 5974 df-fo 5975 df-f1o 5976 df-fv 5977 df-ov 6736 df-oprab 6737 df-mpt2 6738 df-er 7830 df-en 8041 df-dom 8042 df-sdom 8043 df-pnf 10157 df-mnf 10158 df-xr 10159 df-ltxr 10160 df-le 10161 df-ico 12263 |
This theorem is referenced by: icombl 23421 difico 29743 |
Copyright terms: Public domain | W3C validator |