Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ider Structured version   Visualization version   GIF version

Theorem ider 7739
 Description: The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ider I Er V

Proof of Theorem ider
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑥 = 𝑦𝑥 = 𝑦)
2 dfid3 5000 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
31, 2eqer 7737 1 I Er V
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3190   I cid 4994   Er wer 7699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-er 7702 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator