Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  idlmhm Structured version   Visualization version   GIF version

Theorem idlmhm 19089
 Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
idlmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idlmhm (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀))

Proof of Theorem idlmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlmhm.b . 2 𝐵 = (Base‘𝑀)
2 eqid 2651 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2651 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2651 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 id 22 . 2 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
6 eqidd 2652 . 2 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
7 lmodgrp 18918 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
81idghm 17722 . . 3 (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀))
97, 8syl 17 . 2 (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀))
101, 3, 2, 4lmodvscl 18928 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
11103expb 1285 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
12 fvresi 6480 . . . 4 ((𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
1311, 12syl 17 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
14 fvresi 6480 . . . . 5 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
1514ad2antll 765 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
1615oveq2d 6706 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
1713, 16eqtr4d 2688 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)(( I ↾ 𝐵)‘𝑦)))
181, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17islmhmd 19087 1 (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   I cid 5052   ↾ cres 5145  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  Scalarcsca 15991   ·𝑠 cvsca 15992  Grpcgrp 17469   GrpHom cghm 17704  LModclmod 18911   LMHom clmhm 19067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-ghm 17705  df-lmod 18913  df-lmhm 19070 This theorem is referenced by:  idnmhm  22605  mendring  38079
 Copyright terms: Public domain W3C validator