Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlrmulcl Structured version   Visualization version   GIF version

Theorem idlrmulcl 33791
Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idllmulcl.1 𝐺 = (1st𝑅)
idllmulcl.2 𝐻 = (2nd𝑅)
idllmulcl.3 𝑋 = ran 𝐺
Assertion
Ref Expression
idlrmulcl (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼)

Proof of Theorem idlrmulcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idllmulcl.1 . . . . . 6 𝐺 = (1st𝑅)
2 idllmulcl.2 . . . . . 6 𝐻 = (2nd𝑅)
3 idllmulcl.3 . . . . . 6 𝑋 = ran 𝐺
4 eqid 2620 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 33784 . . . . 5 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))))
65biimpa 501 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼))))
76simp3d 1073 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)))
8 simpr 477 . . . . . 6 (((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → (𝑥𝐻𝑧) ∈ 𝐼)
98ralimi 2949 . . . . 5 (∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼) → ∀𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
109adantl 482 . . . 4 ((∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
1110ralimi 2949 . . 3 (∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧𝐻𝑥) ∈ 𝐼 ∧ (𝑥𝐻𝑧) ∈ 𝐼)) → ∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
127, 11syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → ∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼)
13 oveq1 6642 . . . 4 (𝑥 = 𝐴 → (𝑥𝐻𝑧) = (𝐴𝐻𝑧))
1413eleq1d 2684 . . 3 (𝑥 = 𝐴 → ((𝑥𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝑧) ∈ 𝐼))
15 oveq2 6643 . . . 4 (𝑧 = 𝐵 → (𝐴𝐻𝑧) = (𝐴𝐻𝐵))
1615eleq1d 2684 . . 3 (𝑧 = 𝐵 → ((𝐴𝐻𝑧) ∈ 𝐼 ↔ (𝐴𝐻𝐵) ∈ 𝐼))
1714, 16rspc2v 3317 . 2 ((𝐴𝐼𝐵𝑋) → (∀𝑥𝐼𝑧𝑋 (𝑥𝐻𝑧) ∈ 𝐼 → (𝐴𝐻𝐵) ∈ 𝐼))
1812, 17mpan9 486 1 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝐴𝐼𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wss 3567  ran crn 5105  cfv 5876  (class class class)co 6635  1st c1st 7151  2nd c2nd 7152  GIdcgi 27314  RingOpscrngo 33664  Idlcidl 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fv 5884  df-ov 6638  df-idl 33780
This theorem is referenced by:  1idl  33796  intidl  33799  unichnidl  33801
  Copyright terms: Public domain W3C validator