Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn2 Structured version   Visualization version   GIF version

Theorem idn2 38658
Description: Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn2 (   𝜑   ,   𝜓   ▶   𝜓   )

Proof of Theorem idn2
StepHypRef Expression
1 idd 24 . 2 (𝜑 → (𝜓𝜓))
21dfvd2ir 38622 1 (   𝜑   ,   𝜓   ▶   𝜓   )
Colors of variables: wff setvar class
Syntax hints:  (   wvd2 38613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-vd2 38614
This theorem is referenced by:  trsspwALT  38865  sspwtr  38868  pwtrVD  38879  pwtrrVD  38880  snssiALTVD  38882  sstrALT2VD  38889  suctrALT2VD  38891  elex2VD  38893  elex22VD  38894  eqsbc3rVD  38895  tpid3gVD  38897  en3lplem1VD  38898  en3lplem2VD  38899  3ornot23VD  38902  orbi1rVD  38903  19.21a3con13vVD  38907  exbirVD  38908  exbiriVD  38909  rspsbc2VD  38910  tratrbVD  38917  syl5impVD  38919  ssralv2VD  38922  imbi12VD  38929  imbi13VD  38930  sbcim2gVD  38931  sbcbiVD  38932  truniALTVD  38934  trintALTVD  38936  onfrALTlem3VD  38943  onfrALTlem2VD  38945  onfrALTlem1VD  38946  relopabVD  38957  19.41rgVD  38958  hbimpgVD  38960  ax6e2eqVD  38963  ax6e2ndeqVD  38965  sb5ALTVD  38969  vk15.4jVD  38970  con3ALTVD  38972
  Copyright terms: Public domain W3C validator