Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idn3 Structured version   Visualization version   GIF version

Theorem idn3 39157
Description: Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
idn3 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜒   )

Proof of Theorem idn3
StepHypRef Expression
1 idd 24 . . 3 (𝜓 → (𝜒𝜒))
21a1i 11 . 2 (𝜑 → (𝜓 → (𝜒𝜒)))
32dfvd3ir 39126 1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd3 39120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056  df-vd3 39123
This theorem is referenced by:  suctrALT2VD  39385  en3lplem2VD  39393  exbirVD  39402  exbiriVD  39403  rspsbc2VD  39404  tratrbVD  39411  ssralv2VD  39416  imbi12VD  39423  imbi13VD  39424  truniALTVD  39428  trintALTVD  39430  onfrALTlem2VD  39439
  Copyright terms: Public domain W3C validator