Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idsset Structured version   Visualization version   GIF version

Theorem idsset 33353
Description: I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
idsset I = ( SSet SSet )

Proof of Theorem idsset
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 5700 . 2 Rel I
2 relsset 33351 . . 3 Rel SSet
3 relin1 5687 . . 3 (Rel SSet → Rel ( SSet SSet ))
42, 3ax-mp 5 . 2 Rel ( SSet SSet )
5 eqss 3984 . . 3 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
6 vex 3499 . . . 4 𝑧 ∈ V
76ideq 5725 . . 3 (𝑦 I 𝑧𝑦 = 𝑧)
8 brin 5120 . . . 4 (𝑦( SSet SSet )𝑧 ↔ (𝑦 SSet 𝑧𝑦 SSet 𝑧))
96brsset 33352 . . . . 5 (𝑦 SSet 𝑧𝑦𝑧)
10 vex 3499 . . . . . . 7 𝑦 ∈ V
1110, 6brcnv 5755 . . . . . 6 (𝑦 SSet 𝑧𝑧 SSet 𝑦)
1210brsset 33352 . . . . . 6 (𝑧 SSet 𝑦𝑧𝑦)
1311, 12bitri 277 . . . . 5 (𝑦 SSet 𝑧𝑧𝑦)
149, 13anbi12i 628 . . . 4 ((𝑦 SSet 𝑧𝑦 SSet 𝑧) ↔ (𝑦𝑧𝑧𝑦))
158, 14bitri 277 . . 3 (𝑦( SSet SSet )𝑧 ↔ (𝑦𝑧𝑧𝑦))
165, 7, 153bitr4i 305 . 2 (𝑦 I 𝑧𝑦( SSet SSet )𝑧)
171, 4, 16eqbrriv 5666 1 I = ( SSet SSet )
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  cin 3937  wss 3938   class class class wbr 5068   I cid 5461  ccnv 5556  Rel wrel 5562   SSet csset 33295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-eprel 5467  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-txp 33317  df-sset 33319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator