HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  idunop Structured version   Visualization version   GIF version

Theorem idunop 29757
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
idunop ( I ↾ ℋ) ∈ UniOp

Proof of Theorem idunop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6654 . . 3 ( I ↾ ℋ): ℋ–1-1-onto→ ℋ
2 f1ofo 6624 . . 3 (( I ↾ ℋ): ℋ–1-1-onto→ ℋ → ( I ↾ ℋ): ℋ–onto→ ℋ)
31, 2ax-mp 5 . 2 ( I ↾ ℋ): ℋ–onto→ ℋ
4 fvresi 6937 . . . 4 (𝑥 ∈ ℋ → (( I ↾ ℋ)‘𝑥) = 𝑥)
5 fvresi 6937 . . . 4 (𝑦 ∈ ℋ → (( I ↾ ℋ)‘𝑦) = 𝑦)
64, 5oveqan12d 7177 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦))
76rgen2 3205 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)
8 elunop 29651 . 2 (( I ↾ ℋ) ∈ UniOp ↔ (( I ↾ ℋ): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((( I ↾ ℋ)‘𝑥) ·ih (( I ↾ ℋ)‘𝑦)) = (𝑥 ·ih 𝑦)))
93, 7, 8mpbir2an 709 1 ( I ↾ ℋ) ∈ UniOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  wral 3140   I cid 5461  cres 5559  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  chba 28698   ·ih csp 28701  UniOpcuo 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-hilex 28778
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-unop 29622
This theorem is referenced by:  idlnop  29771
  Copyright terms: Public domain W3C validator