MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq12da Structured version   Visualization version   GIF version

Theorem ifeq12da 4096
Description: Equivalence deduction for conditional operators. (Contributed by Wolf Lammen, 24-Jun-2021.)
Hypotheses
Ref Expression
ifeq12da.1 ((𝜑𝜓) → 𝐴 = 𝐶)
ifeq12da.2 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷)
Assertion
Ref Expression
ifeq12da (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))

Proof of Theorem ifeq12da
StepHypRef Expression
1 ifeq12da.1 . . . 4 ((𝜑𝜓) → 𝐴 = 𝐶)
21ifeq1da 4094 . . 3 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐵))
3 iftrue 4070 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐵) = 𝐶)
4 iftrue 4070 . . . 4 (𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐶)
53, 4eqtr4d 2658 . . 3 (𝜓 → if(𝜓, 𝐶, 𝐵) = if(𝜓, 𝐶, 𝐷))
62, 5sylan9eq 2675 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
7 ifeq12da.2 . . . 4 ((𝜑 ∧ ¬ 𝜓) → 𝐵 = 𝐷)
87ifeq2da 4095 . . 3 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐷))
9 iffalse 4073 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐷) = 𝐷)
10 iffalse 4073 . . . 4 𝜓 → if(𝜓, 𝐶, 𝐷) = 𝐷)
119, 10eqtr4d 2658 . . 3 𝜓 → if(𝜓, 𝐴, 𝐷) = if(𝜓, 𝐶, 𝐷))
128, 11sylan9eq 2675 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
136, 12pm2.61dan 831 1 (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜓, 𝐶, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  ifcif 4064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-un 3565  df-if 4065
This theorem is referenced by:  ifbieq12d2  4097
  Copyright terms: Public domain W3C validator