MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4149
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4137 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4128 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4128 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2688 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 849 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  ifcif 4119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-un 3612  df-if 4120
This theorem is referenced by:  ifeq12da  4151  cantnflem1d  8623  cantnflem1  8624  dfac12lem1  9003  xrmaxeq  12048  xrmineq  12049  rexmul  12139  max0add  14094  sumeq2ii  14467  fsumser  14505  ramcl  15780  dmdprdsplitlem  18482  coe1pwmul  19697  scmatscmiddistr  20362  mulmarep1gsum1  20427  maducoeval2  20494  madugsum  20497  madurid  20498  ptcld  21464  copco  22864  ibllem  23576  itgvallem3  23597  iblposlem  23603  iblss2  23617  iblmulc2  23642  cnplimc  23696  limcco  23702  dvexp3  23786  dchrinvcl  25023  lgsval2lem  25077  lgsval4lem  25078  lgsneg  25091  lgsmod  25093  lgsdilem2  25103  rpvmasum2  25246  mrsubrn  31536  ftc1anclem6  33620  ftc1anclem8  33622
  Copyright terms: Public domain W3C validator