Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpan23 Structured version   Visualization version   GIF version

Theorem ifpan23 37285
 Description: Conjunction of conditional logical operators. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpan23 ((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ if-(𝜑, (𝜓𝜃), (𝜒𝜏)))

Proof of Theorem ifpan23
StepHypRef Expression
1 ifpan123g 37284 . 2 ((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ (((¬ 𝜑𝜓) ∧ (𝜑𝜒)) ∧ ((¬ 𝜑𝜃) ∧ (𝜑𝜏))))
2 an4 864 . 2 ((((¬ 𝜑𝜓) ∧ (𝜑𝜒)) ∧ ((¬ 𝜑𝜃) ∧ (𝜑𝜏))) ↔ (((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜃)) ∧ ((𝜑𝜒) ∧ (𝜑𝜏))))
3 dfifp4 1015 . . 3 (if-(𝜑, (𝜓𝜃), (𝜒𝜏)) ↔ ((¬ 𝜑 ∨ (𝜓𝜃)) ∧ (𝜑 ∨ (𝜒𝜏))))
4 ordi 907 . . . 4 ((¬ 𝜑 ∨ (𝜓𝜃)) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜃)))
5 ordi 907 . . . 4 ((𝜑 ∨ (𝜒𝜏)) ↔ ((𝜑𝜒) ∧ (𝜑𝜏)))
64, 5anbi12i 732 . . 3 (((¬ 𝜑 ∨ (𝜓𝜃)) ∧ (𝜑 ∨ (𝜒𝜏))) ↔ (((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜃)) ∧ ((𝜑𝜒) ∧ (𝜑𝜏))))
73, 6bitr2i 265 . 2 ((((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜃)) ∧ ((𝜑𝜒) ∧ (𝜑𝜏))) ↔ if-(𝜑, (𝜓𝜃), (𝜒𝜏)))
81, 2, 73bitri 286 1 ((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ if-(𝜑, (𝜓𝜃), (𝜒𝜏)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∨ wo 383   ∧ wa 384  if-wif 1011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012 This theorem is referenced by:  ifpdfbi  37299  ifpdfxor  37313
 Copyright terms: Public domain W3C validator