Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpim1g Structured version   Visualization version   GIF version

Theorem ifpim1g 37348
 Description: Implication of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
Assertion
Ref Expression
ifpim1g ((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ (((𝜓𝜑) ∨ (𝜃𝜒)) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))

Proof of Theorem ifpim1g
StepHypRef Expression
1 ifpim123g 37347 . 2 ((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜒)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒))) ∧ (((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((¬ 𝜓𝜑) ∨ (𝜃𝜃)))))
2 id 22 . . . . . 6 (𝜒𝜒)
32olci 406 . . . . 5 ((𝜑 → ¬ 𝜓) ∨ (𝜒𝜒))
43biantrur 527 . . . 4 (((𝜓𝜑) ∨ (𝜃𝜒)) ↔ (((𝜑 → ¬ 𝜓) ∨ (𝜒𝜒)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒))))
54bicomi 214 . . 3 ((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜒)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒))) ↔ ((𝜓𝜑) ∨ (𝜃𝜒)))
6 id 22 . . . . . 6 (𝜃𝜃)
76olci 406 . . . . 5 ((¬ 𝜓𝜑) ∨ (𝜃𝜃))
87biantru 526 . . . 4 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ (((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((¬ 𝜓𝜑) ∨ (𝜃𝜃))))
98bicomi 214 . . 3 ((((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((¬ 𝜓𝜑) ∨ (𝜃𝜃))) ↔ ((𝜑𝜓) ∨ (𝜒𝜃)))
105, 9anbi12i 732 . 2 (((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜒)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒))) ∧ (((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((¬ 𝜓𝜑) ∨ (𝜃𝜃)))) ↔ (((𝜓𝜑) ∨ (𝜃𝜒)) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))
111, 10bitri 264 1 ((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ (((𝜓𝜑) ∨ (𝜃𝜒)) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384  if-wif 1011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012 This theorem is referenced by:  ifp1bi  37349
 Copyright terms: Public domain W3C validator