Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpim2 Structured version   Visualization version   GIF version

Theorem ifpim2 39715
Description: Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpim2 ((𝜑𝜓) ↔ if-(𝜓, ⊤, ¬ 𝜑))

Proof of Theorem ifpim2
StepHypRef Expression
1 tru 1532 . . . 4
21olci 860 . . 3 𝜓 ∨ ⊤)
32biantrur 531 . 2 ((𝜓 ∨ ¬ 𝜑) ↔ ((¬ 𝜓 ∨ ⊤) ∧ (𝜓 ∨ ¬ 𝜑)))
4 imor 847 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
5 orcom 864 . . 3 ((¬ 𝜑𝜓) ↔ (𝜓 ∨ ¬ 𝜑))
64, 5bitri 276 . 2 ((𝜑𝜓) ↔ (𝜓 ∨ ¬ 𝜑))
7 dfifp4 1058 . 2 (if-(𝜓, ⊤, ¬ 𝜑) ↔ ((¬ 𝜓 ∨ ⊤) ∧ (𝜓 ∨ ¬ 𝜑)))
83, 6, 73bitr4i 304 1 ((𝜑𝜓) ↔ if-(𝜓, ⊤, ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841  if-wif 1054  wtru 1529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-tru 1531
This theorem is referenced by:  ifpdfbi  39717
  Copyright terms: Public domain W3C validator