MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pdvds Structured version   Visualization version   GIF version

Theorem ig1pdvds 23857
Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
ig1pdvds.d = (∥r𝑃)
Assertion
Ref Expression
ig1pdvds ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)

Proof of Theorem ig1pdvds
StepHypRef Expression
1 drngring 18686 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 ig1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
32ply1ring 19550 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝑅 ∈ DivRing → 𝑃 ∈ Ring)
543ad2ant1 1080 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝑃 ∈ Ring)
6 eqid 2621 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
7 ig1pcl.u . . . . . . . 8 𝑈 = (LIdeal‘𝑃)
86, 7lidlss 19142 . . . . . . 7 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
983ad2ant2 1081 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ⊆ (Base‘𝑃))
10 ig1pval.g . . . . . . . 8 𝐺 = (idlGen1p𝑅)
112, 10, 7ig1pcl 23856 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
12113adant3 1079 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ 𝐼)
139, 12sseldd 3588 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) ∈ (Base‘𝑃))
14 ig1pdvds.d . . . . . 6 = (∥r𝑃)
15 eqid 2621 . . . . . 6 (0g𝑃) = (0g𝑃)
166, 14, 15dvdsr01 18587 . . . . 5 ((𝑃 ∈ Ring ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝐺𝐼) (0g𝑃))
175, 13, 16syl2anc 692 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) (0g𝑃))
1817adantr 481 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) (0g𝑃))
19 eleq2 2687 . . . . . 6 (𝐼 = {(0g𝑃)} → (𝑋𝐼𝑋 ∈ {(0g𝑃)}))
2019biimpac 503 . . . . 5 ((𝑋𝐼𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
21203ad2antl3 1223 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 ∈ {(0g𝑃)})
22 elsni 4170 . . . 4 (𝑋 ∈ {(0g𝑃)} → 𝑋 = (0g𝑃))
2321, 22syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → 𝑋 = (0g𝑃))
2418, 23breqtrrd 4646 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 = {(0g𝑃)}) → (𝐺𝐼) 𝑋)
25 simpl1 1062 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ DivRing)
2625, 1syl 17 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑅 ∈ Ring)
27 simpl2 1063 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼𝑈)
2827, 8syl 17 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ⊆ (Base‘𝑃))
29 simpl3 1064 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋𝐼)
3028, 29sseldd 3588 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑋 ∈ (Base‘𝑃))
31 simpr 477 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝐼 ≠ {(0g𝑃)})
32 eqid 2621 . . . . . . . . . . 11 ( deg1𝑅) = ( deg1𝑅)
33 eqid 2621 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
342, 10, 15, 7, 32, 33ig1pval3 23855 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘(𝐺𝐼)) = inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3525, 27, 31, 34syl3anc 1323 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘(𝐺𝐼)) = inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
3635simp2d 1072 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Monic1p𝑅))
37 eqid 2621 . . . . . . . . 9 (Unic1p𝑅) = (Unic1p𝑅)
3837, 33mon1puc1p 23831 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ (Monic1p𝑅)) → (𝐺𝐼) ∈ (Unic1p𝑅))
3926, 36, 38syl2anc 692 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Unic1p𝑅))
40 eqid 2621 . . . . . . . 8 (rem1p𝑅) = (rem1p𝑅)
4140, 2, 6, 37, 32r1pdeglt 23839 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < (( deg1𝑅)‘(𝐺𝐼)))
4226, 30, 39, 41syl3anc 1323 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < (( deg1𝑅)‘(𝐺𝐼)))
4335simp3d 1073 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅)‘(𝐺𝐼)) = inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4442, 43breqtrd 4644 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ))
4532, 2, 6deg1xrf 23762 . . . . . . 7 ( deg1𝑅):(Base‘𝑃)⟶ℝ*
4635simp1d 1071 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
4728, 46sseldd 3588 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ (Base‘𝑃))
48 eqid 2621 . . . . . . . . . . 11 (quot1p𝑅) = (quot1p𝑅)
49 eqid 2621 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
50 eqid 2621 . . . . . . . . . . 11 (-g𝑃) = (-g𝑃)
5140, 2, 6, 48, 49, 50r1pval 23837 . . . . . . . . . 10 ((𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Base‘𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5230, 47, 51syl2anc 692 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))))
5326, 3syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → 𝑃 ∈ Ring)
5448, 2, 6, 37q1pcl 23836 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
5526, 30, 39, 54syl3anc 1323 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
567, 6, 49lidlmcl 19149 . . . . . . . . . . 11 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑋(quot1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ 𝐼)) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
5753, 27, 55, 46, 56syl22anc 1324 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)
587, 50lidlsubcl 19148 . . . . . . . . . 10 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼 ∧ ((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼)) ∈ 𝐼)) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
5953, 27, 29, 57, 58syl22anc 1324 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(-g𝑃)((𝑋(quot1p𝑅)(𝐺𝐼))(.r𝑃)(𝐺𝐼))) ∈ 𝐼)
6052, 59eqeltrd 2698 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
6128, 60sseldd 3588 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃))
62 ffvelrn 6318 . . . . . . 7 ((( deg1𝑅):(Base‘𝑃)⟶ℝ* ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (Base‘𝑃)) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6345, 61, 62sylancr 694 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ*)
6428ssdifd 3729 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}))
65 imass2 5465 . . . . . . . . . 10 ((𝐼 ∖ {(0g𝑃)}) ⊆ ((Base‘𝑃) ∖ {(0g𝑃)}) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (( deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6664, 65syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (( deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})))
6732, 2, 15, 6deg1n0ima 23770 . . . . . . . . . . 11 (𝑅 ∈ Ring → (( deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
6826, 67syl 17 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ ℕ0)
69 nn0uz 11674 . . . . . . . . . 10 0 = (ℤ‘0)
7068, 69syl6sseq 3635 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ ((Base‘𝑃) ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
7166, 70sstrd 3597 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
72 uzssz 11659 . . . . . . . . 9 (ℤ‘0) ⊆ ℤ
73 zssre 11336 . . . . . . . . . 10 ℤ ⊆ ℝ
74 ressxr 10035 . . . . . . . . . 10 ℝ ⊆ ℝ*
7573, 74sstri 3596 . . . . . . . . 9 ℤ ⊆ ℝ*
7672, 75sstri 3596 . . . . . . . 8 (ℤ‘0) ⊆ ℝ*
7771, 76syl6ss 3599 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ ℝ*)
787, 15lidl0cl 19144 . . . . . . . . . . . 12 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
7953, 27, 78syl2anc 692 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (0g𝑃) ∈ 𝐼)
8079snssd 4314 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ⊆ 𝐼)
8131necomd 2845 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → {(0g𝑃)} ≠ 𝐼)
82 pssdifn0 3923 . . . . . . . . . 10 (({(0g𝑃)} ⊆ 𝐼 ∧ {(0g𝑃)} ≠ 𝐼) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
8380, 81, 82syl2anc 692 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ≠ ∅)
84 ffn 6007 . . . . . . . . . . . 12 (( deg1𝑅):(Base‘𝑃)⟶ℝ* → ( deg1𝑅) Fn (Base‘𝑃))
8545, 84ax-mp 5 . . . . . . . . . . 11 ( deg1𝑅) Fn (Base‘𝑃)
8628ssdifssd 3731 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
87 fnimaeq0 5975 . . . . . . . . . . 11 ((( deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃)) → ((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8885, 86, 87sylancr 694 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) = ∅ ↔ (𝐼 ∖ {(0g𝑃)}) = ∅))
8988necon3bid 2834 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅ ↔ (𝐼 ∖ {(0g𝑃)}) ≠ ∅))
9083, 89mpbird 247 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅)
91 infssuzcl 11724 . . . . . . . 8 (((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ≠ ∅) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9271, 90, 91syl2anc 692 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
9377, 92sseldd 3588 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*)
94 xrltnle 10057 . . . . . 6 (((( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ ℝ* ∧ inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ∈ ℝ*) → ((( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9563, 93, 94syl2anc 692 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) < inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ↔ ¬ inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
9644, 95mpbid 222 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ¬ inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
9771adantr 481 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0))
9885a1i 11 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → ( deg1𝑅) Fn (Base‘𝑃))
9986adantr 481 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃))
10060adantr 481 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼)
101 simpr 477 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃))
102 eldifsn 4292 . . . . . . . . 9 ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}) ↔ ((𝑋(rem1p𝑅)(𝐺𝐼)) ∈ 𝐼 ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)))
103100, 101, 102sylanbrc 697 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)}))
104 fnfvima 6456 . . . . . . . 8 ((( deg1𝑅) Fn (Base‘𝑃) ∧ (𝐼 ∖ {(0g𝑃)}) ⊆ (Base‘𝑃) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ∈ (𝐼 ∖ {(0g𝑃)})) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
10598, 99, 103, 104syl3anc 1323 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})))
106 infssuzle 11723 . . . . . . 7 (((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})) ⊆ (ℤ‘0) ∧ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) ∈ (( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)}))) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
10797, 105, 106syl2anc 692 . . . . . 6 ((((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) ∧ (𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃)) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))))
108107ex 450 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝑋(rem1p𝑅)(𝐺𝐼)) ≠ (0g𝑃) → inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼)))))
109108necon1bd 2808 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (¬ inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < ) ≤ (( deg1𝑅)‘(𝑋(rem1p𝑅)(𝐺𝐼))) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11096, 109mpd 15 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃))
1112, 14, 6, 37, 15, 40dvdsr1p 23842 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝐺𝐼) ∈ (Unic1p𝑅)) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
11226, 30, 39, 111syl3anc 1323 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) 𝑋 ↔ (𝑋(rem1p𝑅)(𝐺𝐼)) = (0g𝑃)))
113110, 112mpbird 247 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) 𝑋)
11424, 113pm2.61dane 2877 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝑋𝐼) → (𝐺𝐼) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3556  wss 3559  c0 3896  {csn 4153   class class class wbr 4618  cima 5082   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  infcinf 8299  cr 9887  0cc0 9888  *cxr 10025   < clt 10026  cle 10027  0cn0 11244  cz 11329  cuz 11639  Basecbs 15792  .rcmulr 15874  0gc0g 16032  -gcsg 17356  Ringcrg 18479  rcdsr 18570  DivRingcdr 18679  LIdealclidl 19102  Poly1cpl1 19479   deg1 cdg1 23735  Monic1pcmn1 23806  Unic1pcuc1p 23807  quot1pcq1p 23808  rem1pcr1p 23809  idlGen1pcig1p 23810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-0g 16034  df-gsum 16035  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-drng 18681  df-subrg 18710  df-lmod 18797  df-lss 18865  df-sra 19104  df-rgmod 19105  df-lidl 19106  df-rlreg 19215  df-ascl 19246  df-psr 19288  df-mvr 19289  df-mpl 19290  df-opsr 19292  df-psr1 19482  df-vr1 19483  df-ply1 19484  df-coe1 19485  df-cnfld 19679  df-mdeg 23736  df-deg1 23737  df-mon1 23811  df-uc1p 23812  df-q1p 23813  df-r1p 23814  df-ig1p 23815
This theorem is referenced by:  ig1prsp  23858
  Copyright terms: Public domain W3C validator