MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf1 Structured version   Visualization version   GIF version

Theorem iihalf1 22777
Description: Map the first half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))

Proof of Theorem iihalf1
StepHypRef Expression
1 2re 11128 . . . . 5 2 ∈ ℝ
2 remulcl 10059 . . . . 5 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 706 . . . 4 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
433ad2ant1 1102 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ∈ ℝ)
5 0le2 11149 . . . . 5 0 ≤ 2
6 mulge0 10584 . . . . 5 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) → 0 ≤ (2 · 𝑋))
71, 5, 6mpanl12 718 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → 0 ≤ (2 · 𝑋))
873adant3 1101 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → 0 ≤ (2 · 𝑋))
9 1re 10077 . . . . . 6 1 ∈ ℝ
10 2pos 11150 . . . . . . 7 0 < 2
111, 10pm3.2i 470 . . . . . 6 (2 ∈ ℝ ∧ 0 < 2)
12 lemuldiv2 10942 . . . . . 6 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
139, 11, 12mp3an23 1456 . . . . 5 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ 1 ↔ 𝑋 ≤ (1 / 2)))
1413biimpar 501 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
15143adant2 1100 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → (2 · 𝑋) ≤ 1)
164, 8, 153jca 1261 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) → ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
17 0re 10078 . . 3 0 ∈ ℝ
18 halfre 11284 . . 3 (1 / 2) ∈ ℝ
1917, 18elicc2i 12277 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
2017, 9elicc2i 12277 . 2 ((2 · 𝑋) ∈ (0[,]1) ↔ ((2 · 𝑋) ∈ ℝ ∧ 0 ≤ (2 · 𝑋) ∧ (2 · 𝑋) ≤ 1))
2116, 19, 203imtr4i 281 1 (𝑋 ∈ (0[,](1 / 2)) → (2 · 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  2c2 11108  [,]cicc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-icc 12220
This theorem is referenced by:  iihalf1cn  22778  phtpycc  22837  copco  22864  pcohtpylem  22865  pcopt  22868  pcopt2  22869  pcorevlem  22872
  Copyright terms: Public domain W3C validator