MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2 Structured version   Visualization version   GIF version

Theorem iihalf2 22487
Description: Map the second half of II into II. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iihalf2 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))

Proof of Theorem iihalf2
StepHypRef Expression
1 2re 10939 . . . . . 6 2 ∈ ℝ
2 remulcl 9877 . . . . . 6 ((2 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (2 · 𝑋) ∈ ℝ)
31, 2mpan 701 . . . . 5 (𝑋 ∈ ℝ → (2 · 𝑋) ∈ ℝ)
4 1re 9895 . . . . 5 1 ∈ ℝ
5 resubcl 10196 . . . . 5 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝑋) − 1) ∈ ℝ)
63, 4, 5sylancl 692 . . . 4 (𝑋 ∈ ℝ → ((2 · 𝑋) − 1) ∈ ℝ)
763ad2ant1 1074 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ∈ ℝ)
8 subge0 10392 . . . . . . 7 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
93, 4, 8sylancl 692 . . . . . 6 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ 1 ≤ (2 · 𝑋)))
10 2pos 10961 . . . . . . . 8 0 < 2
111, 10pm3.2i 469 . . . . . . 7 (2 ∈ ℝ ∧ 0 < 2)
12 ledivmul 10750 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
134, 11, 12mp3an13 1406 . . . . . 6 (𝑋 ∈ ℝ → ((1 / 2) ≤ 𝑋 ↔ 1 ≤ (2 · 𝑋)))
149, 13bitr4d 269 . . . . 5 (𝑋 ∈ ℝ → (0 ≤ ((2 · 𝑋) − 1) ↔ (1 / 2) ≤ 𝑋))
1514biimpar 500 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋) → 0 ≤ ((2 · 𝑋) − 1))
16153adant3 1073 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → 0 ≤ ((2 · 𝑋) − 1))
17 ax-1cn 9850 . . . . . . . . 9 1 ∈ ℂ
18172timesi 10996 . . . . . . . 8 (2 · 1) = (1 + 1)
1918a1i 11 . . . . . . 7 (𝑋 ∈ ℝ → (2 · 1) = (1 + 1))
2019breq2d 4589 . . . . . 6 (𝑋 ∈ ℝ → ((2 · 𝑋) ≤ (2 · 1) ↔ (2 · 𝑋) ≤ (1 + 1)))
21 lemul2 10727 . . . . . . 7 ((𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
224, 11, 21mp3an23 1407 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ (2 · 𝑋) ≤ (2 · 1)))
23 lesubadd 10351 . . . . . . . 8 (((2 · 𝑋) ∈ ℝ ∧ 1 ∈ ℝ ∧ 1 ∈ ℝ) → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
244, 4, 23mp3an23 1407 . . . . . . 7 ((2 · 𝑋) ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
253, 24syl 17 . . . . . 6 (𝑋 ∈ ℝ → (((2 · 𝑋) − 1) ≤ 1 ↔ (2 · 𝑋) ≤ (1 + 1)))
2620, 22, 253bitr4d 298 . . . . 5 (𝑋 ∈ ℝ → (𝑋 ≤ 1 ↔ ((2 · 𝑋) − 1) ≤ 1))
2726biimpa 499 . . . 4 ((𝑋 ∈ ℝ ∧ 𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
28273adant2 1072 . . 3 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → ((2 · 𝑋) − 1) ≤ 1)
297, 16, 283jca 1234 . 2 ((𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1) → (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
30 halfre 11095 . . 3 (1 / 2) ∈ ℝ
3130, 4elicc2i 12068 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
32 0re 9896 . . 3 0 ∈ ℝ
3332, 4elicc2i 12068 . 2 (((2 · 𝑋) − 1) ∈ (0[,]1) ↔ (((2 · 𝑋) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝑋) − 1) ∧ ((2 · 𝑋) − 1) ≤ 1))
3429, 31, 333imtr4i 279 1 (𝑋 ∈ ((1 / 2)[,]1) → ((2 · 𝑋) − 1) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4577  (class class class)co 6526  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10535  2c2 10919  [,]cicc 12007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-po 4948  df-so 4949  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-2 10928  df-icc 12011
This theorem is referenced by:  iihalf2cn  22488  phtpycc  22545  copco  22573  pcohtpylem  22574  pcopt  22577  pcopt2  22578  pcorevlem  22581
  Copyright terms: Public domain W3C validator