MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iihalf2cn Structured version   Visualization version   GIF version

Theorem iihalf2cn 22488
Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypothesis
Ref Expression
iihalf2cn.1 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
Assertion
Ref Expression
iihalf2cn (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II)

Proof of Theorem iihalf2cn
StepHypRef Expression
1 eqid 2609 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2 iihalf2cn.1 . . 3 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
3 dfii2 22440 . . 3 II = ((topGen‘ran (,)) ↾t (0[,]1))
4 halfre 11095 . . . . 5 (1 / 2) ∈ ℝ
5 1re 9895 . . . . 5 1 ∈ ℝ
6 iccssre 12084 . . . . 5 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
74, 5, 6mp2an 703 . . . 4 ((1 / 2)[,]1) ⊆ ℝ
87a1i 11 . . 3 (⊤ → ((1 / 2)[,]1) ⊆ ℝ)
9 unitssre 12148 . . . 4 (0[,]1) ⊆ ℝ
109a1i 11 . . 3 (⊤ → (0[,]1) ⊆ ℝ)
11 iihalf2 22487 . . . 4 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1))
1211adantl 480 . . 3 ((⊤ ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((2 · 𝑥) − 1) ∈ (0[,]1))
131cnfldtopon 22343 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1413a1i 11 . . . 4 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
15 2cnd 10942 . . . . . 6 (⊤ → 2 ∈ ℂ)
1614, 14, 15cnmptc 21222 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
1714cnmptid 21221 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
181mulcn 22425 . . . . . 6 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1918a1i 11 . . . . 5 (⊤ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
2014, 16, 17, 19cnmpt12f 21226 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
21 1cnd 9912 . . . . 5 (⊤ → 1 ∈ ℂ)
2214, 14, 21cnmptc 21222 . . . 4 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
231subcn 22424 . . . . 5 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2423a1i 11 . . . 4 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
2514, 20, 22, 24cnmpt12f 21226 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) − 1)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
261, 2, 3, 8, 10, 12, 25cnmptre 22481 . 2 (⊤ → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II))
2726trud 1483 1 (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wtru 1475  wcel 1976  wss 3539  cmpt 4637  ran crn 5028  cfv 5789  (class class class)co 6526  cc 9790  cr 9791  0cc0 9792  1c1 9793   · cmul 9797  cmin 10117   / cdiv 10535  2c2 10919  (,)cioo 12004  [,]cicc 12007  t crest 15852  TopOpenctopn 15853  topGenctg 15869  fldccnfld 19515  TopOnctopon 20465   Cn ccn 20785   ×t ctx 21120  IIcii 22433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-q 11623  df-rp 11667  df-xneg 11780  df-xadd 11781  df-xmul 11782  df-ioo 12008  df-icc 12011  df-fz 12155  df-fzo 12292  df-seq 12621  df-exp 12680  df-hash 12937  df-cj 13635  df-re 13636  df-im 13637  df-sqrt 13771  df-abs 13772  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-sca 15732  df-vsca 15733  df-ip 15734  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-hom 15741  df-cco 15742  df-rest 15854  df-topn 15855  df-0g 15873  df-gsum 15874  df-topgen 15875  df-pt 15876  df-prds 15879  df-xrs 15933  df-qtop 15938  df-imas 15939  df-xps 15941  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-mulg 17312  df-cntz 17521  df-cmn 17966  df-psmet 19507  df-xmet 19508  df-met 19509  df-bl 19510  df-mopn 19511  df-cnfld 19516  df-top 20468  df-bases 20469  df-topon 20470  df-topsp 20471  df-cn 20788  df-cnp 20789  df-tx 21122  df-hmeo 21315  df-xms 21882  df-ms 21883  df-tms 21884  df-ii 22435
This theorem is referenced by:  htpycc  22534  pcocn  22572  pcohtpylem  22574  pcopt  22577  pcorevlem  22581
  Copyright terms: Public domain W3C validator