MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iimulcl Structured version   Visualization version   GIF version

Theorem iimulcl 23543
Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iimulcl ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))

Proof of Theorem iimulcl
StepHypRef Expression
1 remulcl 10624 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
213ad2antr1 1184 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
323ad2antl1 1181 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ∈ ℝ)
4 mulge0 11160 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
543adantr3 1167 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
653adantl3 1164 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → 0 ≤ (𝐴 · 𝐵))
7 an6 1441 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)))
8 1re 10643 . . . . . . . 8 1 ∈ ℝ
9 lemul12a 11500 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 1 ∈ ℝ)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
108, 9mpanr2 702 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 1 ∈ ℝ) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
118, 10mpanl2 699 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
1211an4s 658 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → ((𝐴 ≤ 1 ∧ 𝐵 ≤ 1) → (𝐴 · 𝐵) ≤ (1 · 1)))
13123impia 1113 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝐴 ≤ 1 ∧ 𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
147, 13sylbi 219 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ (1 · 1))
15 1t1e1 11802 . . . 4 (1 · 1) = 1
1614, 15breqtrdi 5109 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → (𝐴 · 𝐵) ≤ 1)
173, 6, 163jca 1124 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)) → ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
18 elicc01 12857 . . 3 (𝐴 ∈ (0[,]1) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1))
19 elicc01 12857 . . 3 (𝐵 ∈ (0[,]1) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1))
2018, 19anbi12i 628 . 2 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ 1) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ 1)))
21 elicc01 12857 . 2 ((𝐴 · 𝐵) ∈ (0[,]1) ↔ ((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵) ∧ (𝐴 · 𝐵) ≤ 1))
2217, 20, 213imtr4i 294 1 ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1)) → (𝐴 · 𝐵) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  cle 10678  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-icc 12748
This theorem is referenced by:  iimulcn  23544  iistmd  31147  xrge0iifhom  31182  xrge0pluscn  31185
  Copyright terms: Public domain W3C validator