MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iincld Structured version   Visualization version   GIF version

Theorem iincld 20595
Description: The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iincld ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iincld
StepHypRef Expression
1 eqid 2609 . . . . . . . 8 𝐽 = 𝐽
21cldss 20585 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → 𝐵 𝐽)
3 dfss4 3819 . . . . . . 7 (𝐵 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
42, 3sylib 206 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
54ralimi 2935 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵)
6 iineq2 4468 . . . . 5 (∀𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝐵 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
75, 6syl 17 . . . 4 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
87adantl 480 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = 𝑥𝐴 𝐵)
9 iindif2 4519 . . . 4 (𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
109adantr 479 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽 ∖ ( 𝐽𝐵)) = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
118, 10eqtr3d 2645 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 = ( 𝐽 𝑥𝐴 ( 𝐽𝐵)))
12 r19.2z 4011 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
13 cldrcl 20582 . . . . 5 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1413rexlimivw 3010 . . . 4 (∃𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
1512, 14syl 17 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
161cldopn 20587 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → ( 𝐽𝐵) ∈ 𝐽)
1716ralimi 2935 . . . . 5 (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
1817adantl 480 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
19 iunopn 20470 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
2015, 18, 19syl2anc 690 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽)
211opncld 20589 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐴 ( 𝐽𝐵) ∈ 𝐽) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2215, 20, 21syl2anc 690 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → ( 𝐽 𝑥𝐴 ( 𝐽𝐵)) ∈ (Clsd‘𝐽))
2311, 22eqeltrd 2687 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  cdif 3536  wss 3539  c0 3873   cuni 4366   ciun 4449   ciin 4450  cfv 5790  Topctop 20459  Clsdccld 20572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-iota 5754  df-fun 5792  df-fn 5793  df-fv 5798  df-top 20463  df-cld 20575
This theorem is referenced by:  intcld  20596  riincld  20600  hauscmplem  20961  ubthlem1  26916
  Copyright terms: Public domain W3C validator