Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iineq12f Structured version   Visualization version   GIF version

Theorem iineq12f 33626
 Description: Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
iineq12f.1 𝑥𝐴
iineq12f.2 𝑥𝐵
Assertion
Ref Expression
iineq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)

Proof of Theorem iineq12f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2687 . . . . . 6 (𝐶 = 𝐷 → (𝑦𝐶𝑦𝐷))
21ralimi 2947 . . . . 5 (∀𝑥𝐴 𝐶 = 𝐷 → ∀𝑥𝐴 (𝑦𝐶𝑦𝐷))
3 ralbi 3061 . . . . 5 (∀𝑥𝐴 (𝑦𝐶𝑦𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
42, 3syl 17 . . . 4 (∀𝑥𝐴 𝐶 = 𝐷 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐴 𝑦𝐷))
5 iineq12f.1 . . . . 5 𝑥𝐴
6 iineq12f.2 . . . . 5 𝑥𝐵
75, 6raleqf 3123 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐷 ↔ ∀𝑥𝐵 𝑦𝐷))
84, 7sylan9bbr 736 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐷))
98abbidv 2738 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷})
10 df-iin 4490 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
11 df-iin 4490 . 2 𝑥𝐵 𝐷 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐷}
129, 10, 113eqtr4g 2680 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐷) → 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {cab 2607  Ⅎwnfc 2748  ∀wral 2907  ∩ ciin 4488 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-iin 4490 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator