Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2d Structured version   Visualization version   GIF version

Theorem iineq2d 4573
 Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1 𝑥𝜑
iineq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2d (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3 𝑥𝜑
2 iineq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 449 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 2986 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 iineq2 4570 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
64, 5syl 17 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ∀wral 2941  ∩ ciin 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-ral 2946  df-iin 4555 This theorem is referenced by:  iineq2dv  4575  pmapglbx  35373  smflimmpt  41337  smfsupmpt  41342  smfinfmpt  41346  smflimsuplem4  41350  smflimsupmpt  41356  smfliminfmpt  41359
 Copyright terms: Public domain W3C validator