Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicc Structured version   Visualization version   GIF version

Theorem iinhoiicc 41209
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunhoiicc.k 𝑘𝜑
iunhoiicc.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iunhoiicc.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
iinhoiicc (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicc
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (1 / 𝑛) = (1 / 𝑚))
21oveq2d 6706 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 𝑚)))
32oveq2d 6706 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + (1 / 𝑚))))
43ixpeq2dv 7966 . . . . . . . . 9 (𝑛 = 𝑚X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
54cbviinv 4592 . . . . . . . 8 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
65eleq2i 2722 . . . . . . 7 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
76biimpi 206 . . . . . 6 (𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
87adantl 481 . . . . 5 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
9 iunhoiicc.k . . . . . . 7 𝑘𝜑
10 nfcv 2793 . . . . . . . 8 𝑘𝑓
11 nfcv 2793 . . . . . . . . 9 𝑘
12 nfixp1 7970 . . . . . . . . 9 𝑘X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1311, 12nfiin 4581 . . . . . . . 8 𝑘 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
1410, 13nfel 2806 . . . . . . 7 𝑘 𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))
159, 14nfan 1868 . . . . . 6 𝑘(𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))))
16 iunhoiicc.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1716adantlr 751 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
18 iunhoiicc.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
1918adantlr 751 . . . . . 6 (((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
206biimpri 218 . . . . . . 7 (𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2120adantl 481 . . . . . 6 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
2215, 17, 19, 21iinhoiicclem 41208 . . . . 5 ((𝜑𝑓 𝑚 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑚)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
238, 22syldan 486 . . . 4 ((𝜑𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))) → 𝑓X𝑘𝑋 (𝐴[,]𝐵))
2423ralrimiva 2995 . . 3 (𝜑 → ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
25 dfss3 3625 . . 3 ( 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵) ↔ ∀𝑓 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))𝑓X𝑘𝑋 (𝐴[,]𝐵))
2624, 25sylibr 224 . 2 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,]𝐵))
27 nfv 1883 . . . . . 6 𝑘 𝑛 ∈ ℕ
289, 27nfan 1868 . . . . 5 𝑘(𝜑𝑛 ∈ ℕ)
2916rexrd 10127 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
3029adantlr 751 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ*)
3118adantlr 751 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 ∈ ℝ)
32 nnrp 11880 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3332ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝑛 ∈ ℝ+)
3433rpreccld 11920 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ+)
3534rpred 11910 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (1 / 𝑛) ∈ ℝ)
3631, 35readdcld 10107 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
3736rexrd 10127 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
3816adantlr 751 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴 ∈ ℝ)
3938leidd 10632 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐴𝐴)
4031, 34ltaddrpd 11943 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → 𝐵 < (𝐵 + (1 / 𝑛)))
41 iccssico 12283 . . . . . 6 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4230, 37, 39, 40, 41syl22anc 1367 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐴[,]𝐵) ⊆ (𝐴[,)(𝐵 + (1 / 𝑛))))
4328, 42ixpssixp 39583 . . . 4 ((𝜑𝑛 ∈ ℕ) → X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4443ralrimiva 2995 . . 3 (𝜑 → ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
45 ssiin 4602 . . 3 (X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,]𝐵) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4644, 45sylibr 224 . 2 (𝜑X𝑘𝑋 (𝐴[,]𝐵) ⊆ 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
4726, 46eqssd 3653 1 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wral 2941  wss 3607   ciin 4553   class class class wbr 4685  (class class class)co 6690  Xcixp 7950  cr 9973  1c1 9975   + caddc 9977  *cxr 10111   < clt 10112  cle 10113   / cdiv 10722  cn 11058  +crp 11870  [,)cico 12215  [,]cicc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ico 12219  df-icc 12220  df-fl 12633
This theorem is referenced by:  vonicclem2  41219
  Copyright terms: Public domain W3C validator