Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinhoiicclem Structured version   Visualization version   GIF version

Theorem iinhoiicclem 42832
Description: A n-dimensional closed interval expressed as the indexed intersection of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iinhoiicclem.k 𝑘𝜑
iinhoiicclem.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
iinhoiicclem.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
iinhoiicclem.f (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
Assertion
Ref Expression
iinhoiicclem (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝐹,𝑛   𝑘,𝑋,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iinhoiicclem
StepHypRef Expression
1 iinhoiicclem.f . . . 4 (𝜑𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
21elexd 3512 . . 3 (𝜑𝐹 ∈ V)
3 1nn 11637 . . . . . . . . 9 1 ∈ ℕ
43a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
5 iinhoiicclem.k . . . . . . . . 9 𝑘𝜑
6 iinhoiicclem.a . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
7 iinhoiicclem.b . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
8 peano2re 10801 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
97, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ)
109rexrd 10679 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐵 + 1) ∈ ℝ*)
11 icossre 12805 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ*) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
126, 10, 11syl2anc 584 . . . . . . . . 9 ((𝜑𝑘𝑋) → (𝐴[,)(𝐵 + 1)) ⊆ ℝ)
135, 12ixpssixp 41235 . . . . . . . 8 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ)
14 oveq2 7153 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
15 1div1e1 11318 . . . . . . . . . . . . . . 15 (1 / 1) = 1
1615a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 1) = 1)
1714, 16eqtrd 2853 . . . . . . . . . . . . 13 (𝑛 = 1 → (1 / 𝑛) = 1)
1817oveq2d 7161 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + 1))
1918oveq2d 7161 . . . . . . . . . . 11 (𝑛 = 1 → (𝐴[,)(𝐵 + (1 / 𝑛))) = (𝐴[,)(𝐵 + 1)))
2019ixpeq2dv 8465 . . . . . . . . . 10 (𝑛 = 1 → X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) = X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
2120sseq1d 3995 . . . . . . . . 9 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ))
2221rspcev 3620 . . . . . . . 8 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 ℝ) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
234, 13, 22syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
24 iinss 4971 . . . . . . 7 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2523, 24syl 17 . . . . . 6 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 ℝ)
2625, 1sseldd 3965 . . . . 5 (𝜑𝐹X𝑘𝑋 ℝ)
27 elixpconstg 41232 . . . . . 6 (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
281, 27syl 17 . . . . 5 (𝜑 → (𝐹X𝑘𝑋 ℝ ↔ 𝐹:𝑋⟶ℝ))
2926, 28mpbid 233 . . . 4 (𝜑𝐹:𝑋⟶ℝ)
3029ffnd 6508 . . 3 (𝜑𝐹 Fn 𝑋)
3129ffvelrnda 6843 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ)
326rexrd 10679 . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ*)
33 ssid 3986 . . . . . . . . . . . . 13 X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))
3433a1i 11 . . . . . . . . . . . 12 (𝜑X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3520sseq1d 3995 . . . . . . . . . . . . 13 (𝑛 = 1 → (X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ↔ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))))
3635rspcev 3620 . . . . . . . . . . . 12 ((1 ∈ ℕ ∧ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1))) → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
374, 34, 36syl2anc 584 . . . . . . . . . . 11 (𝜑 → ∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
38 iinss 4971 . . . . . . . . . . 11 (∃𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)) → 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
3937, 38syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ⊆ X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4039, 1sseldd 3965 . . . . . . . . 9 (𝜑𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
4140adantr 481 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)))
42 simpr 485 . . . . . . . 8 ((𝜑𝑘𝑋) → 𝑘𝑋)
43 fvixp2 41337 . . . . . . . 8 ((𝐹X𝑘𝑋 (𝐴[,)(𝐵 + 1)) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
4441, 42, 43syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1)))
45 icogelb 12776 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + 1))) → 𝐴 ≤ (𝐹𝑘))
4632, 10, 44, 45syl3anc 1363 . . . . . 6 ((𝜑𝑘𝑋) → 𝐴 ≤ (𝐹𝑘))
4731adantr 481 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
487adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
49 nnrecre 11667 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5049adantl 482 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5148, 50readdcld 10658 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5232adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
53 ressxr 10673 . . . . . . . . . . 11 ℝ ⊆ ℝ*
5453, 51sseldi 3962 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
55 eliin 4915 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ V → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
562, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹 𝑛 ∈ ℕ X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛)))))
571, 56mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛 ∈ ℕ 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
5857r19.21bi 3205 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))))
59 elixp2 8453 . . . . . . . . . . . . . 14 (𝐹X𝑘𝑋 (𝐴[,)(𝐵 + (1 / 𝑛))) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6058, 59sylib 219 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))))
6160simp3d 1136 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6261r19.21bi 3205 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
6362an32s 648 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛))))
64 icoltub 41660 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ* ∧ (𝐹𝑘) ∈ (𝐴[,)(𝐵 + (1 / 𝑛)))) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6552, 54, 63, 64syl3anc 1363 . . . . . . . . 9 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) < (𝐵 + (1 / 𝑛)))
6647, 51, 65ltled 10776 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑛 ∈ ℕ) → (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
6766ralrimiva 3179 . . . . . . 7 ((𝜑𝑘𝑋) → ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛)))
68 nfv 1906 . . . . . . . 8 𝑛(𝜑𝑘𝑋)
6953, 31sseldi 3962 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ ℝ*)
7068, 69, 7xrralrecnnle 41529 . . . . . . 7 ((𝜑𝑘𝑋) → ((𝐹𝑘) ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ (𝐹𝑘) ≤ (𝐵 + (1 / 𝑛))))
7167, 70mpbird 258 . . . . . 6 ((𝜑𝑘𝑋) → (𝐹𝑘) ≤ 𝐵)
726, 7, 31, 46, 71eliccd 41655 . . . . 5 ((𝜑𝑘𝑋) → (𝐹𝑘) ∈ (𝐴[,]𝐵))
7372ex 413 . . . 4 (𝜑 → (𝑘𝑋 → (𝐹𝑘) ∈ (𝐴[,]𝐵)))
745, 73ralrimi 3213 . . 3 (𝜑 → ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵))
752, 30, 743jca 1120 . 2 (𝜑 → (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
76 elixp2 8453 . 2 (𝐹X𝑘𝑋 (𝐴[,]𝐵) ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐹𝑘) ∈ (𝐴[,]𝐵)))
7775, 76sylibr 235 1 (𝜑𝐹X𝑘𝑋 (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wnf 1775  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  wss 3933   ciin 4911   class class class wbr 5057   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  Xcixp 8449  cr 10524  1c1 10526   + caddc 10528  *cxr 10662   < clt 10663  cle 10664   / cdiv 11285  cn 11626  [,)cico 12728  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ico 12732  df-icc 12733  df-fl 13150
This theorem is referenced by:  iinhoiicc  42833
  Copyright terms: Public domain W3C validator