MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinopn Structured version   Visualization version   GIF version

Theorem iinopn 21504
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.)
Assertion
Ref Expression
iinopn ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iinopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr3 1192 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ∀𝑥𝐴 𝐵𝐽)
2 dfiin2g 4950 . . 3 (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 simpl 485 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐽 ∈ Top)
5 eqid 2821 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65rnmpt 5822 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
75fmpt 6869 . . . . . 6 (∀𝑥𝐴 𝐵𝐽 ↔ (𝑥𝐴𝐵):𝐴𝐽)
81, 7sylib 220 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → (𝑥𝐴𝐵):𝐴𝐽)
98frnd 6516 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → ran (𝑥𝐴𝐵) ⊆ 𝐽)
106, 9eqsstrrid 4016 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽)
118fdmd 6518 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) = 𝐴)
12 simpr2 1191 . . . . 5 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ≠ ∅)
1311, 12eqnetrd 3083 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → dom (𝑥𝐴𝐵) ≠ ∅)
14 dm0rn0 5790 . . . . . 6 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
156eqeq1i 2826 . . . . . 6 (ran (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1614, 15bitri 277 . . . . 5 (dom (𝑥𝐴𝐵) = ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = ∅)
1716necon3bii 3068 . . . 4 (dom (𝑥𝐴𝐵) ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
1813, 17sylib 220 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
19 simpr1 1190 . . . 4 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝐴 ∈ Fin)
20 abrexfi 8818 . . . 4 (𝐴 ∈ Fin → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
2119, 20syl 17 . . 3 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)
22 fiinopn 21503 . . . 4 (𝐽 ∈ Top → (({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽))
2322imp 409 . . 3 ((𝐽 ∈ Top ∧ ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐽 ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ Fin)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
244, 10, 18, 21, 23syl13anc 1368 . 2 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ 𝐽)
253, 24eqeltrd 2913 1 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   cint 4869   ciin 4913  cmpt 5139  dom cdm 5550  ran crn 5551  wf 6346  Fincfn 8503  Topctop 21495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-fin 8507  df-top 21496
This theorem is referenced by:  riinopn  21510  subbascn  21856
  Copyright terms: Public domain W3C validator