![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinss2 | Structured version Visualization version GIF version |
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
iinss2 | ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . 4 ⊢ 𝑦 ∈ V | |
2 | eliin 4557 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | rsp 2958 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
5 | 4 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵)) |
6 | 3, 5 | syl5bi 232 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐵)) |
7 | 6 | ssrdv 3642 | 1 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ∩ ciin 4553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-in 3614 df-ss 3621 df-iin 4555 |
This theorem is referenced by: dmiin 5401 gruiin 9670 txtube 21491 iooiinicc 40087 iooiinioc 40101 meaiininclem 41021 smfsuplem1 41338 smfsuplem3 41340 smflimsuplem2 41348 |
Copyright terms: Public domain | W3C validator |