MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss2 Structured version   Visualization version   GIF version

Theorem iinss2 4502
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2 (𝑥𝐴 𝑥𝐴 𝐵𝐵)

Proof of Theorem iinss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3175 . . . 4 𝑦 ∈ V
2 eliin 4455 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
4 rsp 2912 . . . 4 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴𝑦𝐵))
54com12 32 . . 3 (𝑥𝐴 → (∀𝑥𝐴 𝑦𝐵𝑦𝐵))
63, 5syl5bi 230 . 2 (𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
76ssrdv 3573 1 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wcel 1976  wral 2895  Vcvv 3172  wss 3539   ciin 4450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-v 3174  df-in 3546  df-ss 3553  df-iin 4452
This theorem is referenced by:  dmiin  5277  gruiin  9488  txtube  21195  iooiinicc  38420  iooiinioc  38434  meaiininclem  39180
  Copyright terms: Public domain W3C validator