MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iirev Structured version   Visualization version   GIF version

Theorem iirev 22484
Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iirev (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))

Proof of Theorem iirev
StepHypRef Expression
1 1re 9896 . . . . 5 1 ∈ ℝ
2 resubcl 10197 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (1 − 𝑋) ∈ ℝ)
31, 2mpan 702 . . . 4 (𝑋 ∈ ℝ → (1 − 𝑋) ∈ ℝ)
433ad2ant1 1075 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ∈ ℝ)
5 simp3 1056 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ≤ 1)
6 simp1 1054 . . . . 5 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 𝑋 ∈ ℝ)
7 subge0 10393 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
81, 6, 7sylancr 694 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ (1 − 𝑋) ↔ 𝑋 ≤ 1))
95, 8mpbird 246 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ (1 − 𝑋))
10 simp2 1055 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → 0 ≤ 𝑋)
11 subge02 10396 . . . . 5 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
121, 6, 11sylancr 694 . . . 4 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (0 ≤ 𝑋 ↔ (1 − 𝑋) ≤ 1))
1310, 12mpbid 221 . . 3 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → (1 − 𝑋) ≤ 1)
144, 9, 133jca 1235 . 2 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) → ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
15 0re 9897 . . 3 0 ∈ ℝ
1615, 1elicc2i 12069 . 2 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
1715, 1elicc2i 12069 . 2 ((1 − 𝑋) ∈ (0[,]1) ↔ ((1 − 𝑋) ∈ ℝ ∧ 0 ≤ (1 − 𝑋) ∧ (1 − 𝑋) ≤ 1))
1814, 16, 173imtr4i 280 1 (𝑋 ∈ (0[,]1) → (1 − 𝑋) ∈ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031  wcel 1977   class class class wbr 4578  (class class class)co 6527  cr 9792  0cc0 9793  1c1 9794  cle 9932  cmin 10118  [,]cicc 12008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-icc 12012
This theorem is referenced by:  iirevcn  22485  icccvx  22505  phtpycom  22543  pcorev2  22584  pi1xfrcnv  22613  dvlipcn  23506  efcvx  23952  logccv  24154  leibpi  24414  cvxcl  24456  rescon  30276
  Copyright terms: Public domain W3C validator