MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iitopon Structured version   Visualization version   GIF version

Theorem iitopon 22729
Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iitopon II ∈ (TopOn‘(0[,]1))

Proof of Theorem iitopon
StepHypRef Expression
1 cnxmet 22623 . . 3 (abs ∘ − ) ∈ (∞Met‘ℂ)
2 unitssre 12357 . . . 4 (0[,]1) ⊆ ℝ
3 ax-resscn 10031 . . . 4 ℝ ⊆ ℂ
42, 3sstri 3645 . . 3 (0[,]1) ⊆ ℂ
5 xmetres2 22213 . . 3 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,]1) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)))
61, 4, 5mp2an 708 . 2 ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1))
7 df-ii 22727 . . 3 II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
87mopntopon 22291 . 2 (((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))) ∈ (∞Met‘(0[,]1)) → II ∈ (TopOn‘(0[,]1)))
96, 8ax-mp 5 1 II ∈ (TopOn‘(0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wcel 2030  wss 3607   × cxp 5141  cres 5145  ccom 5147  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  cmin 10304  [,]cicc 12216  abscabs 14018  ∞Metcxmt 19779  TopOnctopon 20763  IIcii 22725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-ii 22727
This theorem is referenced by:  iitop  22730  iiuni  22731  icchmeo  22787  htpycom  22822  htpyid  22823  htpyco1  22824  htpyco2  22825  htpycc  22826  phtpycn  22829  phtpy01  22831  isphtpy2d  22833  phtpycom  22834  phtpyid  22835  phtpyco2  22836  phtpycc  22837  reparphti  22843  pcocn  22863  pcohtpylem  22865  pcoptcl  22867  pcopt  22868  pcopt2  22869  pcoass  22870  pcorevcl  22871  pcorevlem  22872  pi1xfrf  22899  pi1xfr  22901  pi1xfrcnvlem  22902  pi1xfrcnv  22903  pi1cof  22905  pi1coghm  22907  xrge0pluscn  30114  ptpconn  31341  indispconn  31342  connpconn  31343  txsconnlem  31348  txsconn  31349  cvxsconn  31351  cvmliftlem8  31400  cvmlift2lem2  31412  cvmlift2lem3  31413  cvmlift2lem6  31416  cvmlift2lem9  31419  cvmlift2lem11  31421  cvmlift2lem12  31422  cvmliftphtlem  31425  cvmlift3lem6  31432  cvmlift3lem9  31435
  Copyright terms: Public domain W3C validator