Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  im2anan9 Structured version   Visualization version   GIF version

Theorem im2anan9 898
 Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 480 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 481 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4anim12d 585 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385 This theorem is referenced by:  im2anan9r  899  trin  4796  somo  5098  xpss12  5158  f1oun  6194  poxp  7334  soxp  7335  brecop  7883  ingru  9675  genpss  9864  genpnnp  9865  tgcl  20821  txlm  21499  upgrpredgv  26079  3wlkdlem4  27140  frgrwopreglem5  27301  frgrwopreglem5ALT  27302  icorempt2  33329  ax12eq  34545  ax12el  34546  odd2prm2  41952
 Copyright terms: Public domain W3C validator