MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadd Structured version   Visualization version   GIF version

Theorem imadd 13816
Description: Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))

Proof of Theorem imadd
StepHypRef Expression
1 recl 13792 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21adantr 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
32recnd 10020 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
4 ax-icn 9947 . . . . . 6 i ∈ ℂ
5 imcl 13793 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
65adantr 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
76recnd 10020 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 9972 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
94, 7, 8sylancr 694 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
10 recl 13792 . . . . . . 7 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1110adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1211recnd 10020 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
13 imcl 13793 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1413adantl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1514recnd 10020 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
16 mulcl 9972 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
174, 15, 16sylancr 694 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
183, 9, 12, 17add4d 10216 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
19 replim 13798 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
20 replim 13798 . . . . 5 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
2119, 20oveqan12d 6629 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
224a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
2322, 7, 15adddid 10016 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) + (ℑ‘𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
2423oveq2d 6626 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
2518, 21, 243eqtr4d 2665 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵)))))
2625fveq2d 6157 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))))
27 readdcl 9971 . . . 4 (((ℜ‘𝐴) ∈ ℝ ∧ (ℜ‘𝐵) ∈ ℝ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ)
281, 10, 27syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ)
29 readdcl 9971 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ)
305, 13, 29syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ)
31 crim 13797 . . 3 ((((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℝ) → (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
3228, 30, 31syl2anc 692 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(((ℜ‘𝐴) + (ℜ‘𝐵)) + (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
3326, 32eqtrd 2655 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  ici 9890   + caddc 9891   · cmul 9893  cre 13779  cim 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-cj 13781  df-re 13782  df-im 13783
This theorem is referenced by:  imsub  13817  cjadd  13823  imaddi  13867  imaddd  13897  fsumim  14479  gzaddcl  15576  logrnaddcl  24242  logimul  24281  atancj  24554  atanlogaddlem  24557  atanlogsublem  24559
  Copyright terms: Public domain W3C validator