Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadifxp Structured version   Visualization version   GIF version

Theorem imadifxp 30279
Description: Image of the difference with a Cartesian product. (Contributed by Thierry Arnoux, 13-Dec-2017.)
Assertion
Ref Expression
imadifxp (𝐶𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))

Proof of Theorem imadifxp
StepHypRef Expression
1 ima0 5938 . . . 4 ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅) = ∅
2 imaeq2 5918 . . . 4 (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) “ ∅))
3 imaeq2 5918 . . . . . . 7 (𝐶 = ∅ → (𝑅𝐶) = (𝑅 “ ∅))
4 ima0 5938 . . . . . . 7 (𝑅 “ ∅) = ∅
53, 4syl6eq 2869 . . . . . 6 (𝐶 = ∅ → (𝑅𝐶) = ∅)
65difeq1d 4095 . . . . 5 (𝐶 = ∅ → ((𝑅𝐶) ∖ 𝐵) = (∅ ∖ 𝐵))
7 0dif 4352 . . . . 5 (∅ ∖ 𝐵) = ∅
86, 7syl6eq 2869 . . . 4 (𝐶 = ∅ → ((𝑅𝐶) ∖ 𝐵) = ∅)
91, 2, 83eqtr4a 2879 . . 3 (𝐶 = ∅ → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
109adantl 482 . 2 ((𝐶𝐴𝐶 = ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
11 inundif 4423 . . . . . . . . 9 ((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) = 𝑅
1211imaeq1i 5919 . . . . . . . 8 (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (𝑅𝐶)
13 imaundir 6002 . . . . . . . 8 (((𝑅 ∩ (𝐴 × 𝐵)) ∪ (𝑅 ∖ (𝐴 × 𝐵))) “ 𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))
1412, 13eqtr3i 2843 . . . . . . 7 (𝑅𝐶) = (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))
1514difeq1i 4092 . . . . . 6 ((𝑅𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵)
16 difundir 4254 . . . . . 6 ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵))
1715, 16eqtri 2841 . . . . 5 ((𝑅𝐶) ∖ 𝐵) = ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵))
18 inss2 4203 . . . . . . . . 9 (𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
19 imass1 5957 . . . . . . . . 9 ((𝑅 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶))
20 ssdif 4113 . . . . . . . . 9 (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ⊆ ((𝐴 × 𝐵) “ 𝐶) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵))
2118, 19, 20mp2b 10 . . . . . . . 8 (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵)
22 xpima 6032 . . . . . . . . . . 11 ((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
23 incom 4175 . . . . . . . . . . . . . . 15 (𝐶𝐴) = (𝐴𝐶)
24 df-ss 3949 . . . . . . . . . . . . . . . 16 (𝐶𝐴 ↔ (𝐶𝐴) = 𝐶)
2524biimpi 217 . . . . . . . . . . . . . . 15 (𝐶𝐴 → (𝐶𝐴) = 𝐶)
2623, 25syl5eqr 2867 . . . . . . . . . . . . . 14 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
2726adantl 482 . . . . . . . . . . . . 13 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (𝐴𝐶) = 𝐶)
28 simpl 483 . . . . . . . . . . . . 13 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → 𝐶 ≠ ∅)
2927, 28eqnetrd 3080 . . . . . . . . . . . 12 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (𝐴𝐶) ≠ ∅)
30 neneq 3019 . . . . . . . . . . . 12 ((𝐴𝐶) ≠ ∅ → ¬ (𝐴𝐶) = ∅)
31 iffalse 4472 . . . . . . . . . . . 12 (¬ (𝐴𝐶) = ∅ → if((𝐴𝐶) = ∅, ∅, 𝐵) = 𝐵)
3229, 30, 313syl 18 . . . . . . . . . . 11 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → if((𝐴𝐶) = ∅, ∅, 𝐵) = 𝐵)
3322, 32syl5eq 2865 . . . . . . . . . 10 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
3433difeq1d 4095 . . . . . . . . 9 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = (𝐵𝐵))
35 difid 4327 . . . . . . . . 9 (𝐵𝐵) = ∅
3634, 35syl6eq 2869 . . . . . . . 8 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝐴 × 𝐵) “ 𝐶) ∖ 𝐵) = ∅)
3721, 36sseqtrid 4016 . . . . . . 7 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅)
38 ss0 4349 . . . . . . 7 ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ⊆ ∅ → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅)
3937, 38syl 17 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ∅)
40 df-ima 5561 . . . . . . . . . . 11 ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶)
41 df-res 5560 . . . . . . . . . . . 12 ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V))
4241rneqi 5800 . . . . . . . . . . 11 ran ((𝑅 ∖ (𝐴 × 𝐵)) ↾ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V))
4340, 42eqtri 2841 . . . . . . . . . 10 ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V))
4443ineq1i 4182 . . . . . . . . 9 (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵)
45 xpss1 5567 . . . . . . . . . . 11 (𝐶𝐴 → (𝐶 × V) ⊆ (𝐴 × V))
46 sslin 4208 . . . . . . . . . . 11 ((𝐶 × V) ⊆ (𝐴 × V) → ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)))
47 rnss 5802 . . . . . . . . . . 11 (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)))
4845, 46, 473syl 18 . . . . . . . . . 10 (𝐶𝐴 → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)))
49 ssn0 4351 . . . . . . . . . . . 12 ((𝐶𝐴𝐶 ≠ ∅) → 𝐴 ≠ ∅)
5049ancoms 459 . . . . . . . . . . 11 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → 𝐴 ≠ ∅)
51 inss1 4202 . . . . . . . . . . . . . . . 16 ((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V)
52 ssdif 4113 . . . . . . . . . . . . . . . 16 (((𝐴 × V) ∩ 𝑅) ⊆ (𝐴 × V) → (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵)))
5351, 52ax-mp 5 . . . . . . . . . . . . . . 15 (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵)) ⊆ ((𝐴 × V) ∖ (𝐴 × 𝐵))
54 incom 4175 . . . . . . . . . . . . . . . 16 ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V))
55 indif2 4244 . . . . . . . . . . . . . . . 16 ((𝐴 × V) ∩ (𝑅 ∖ (𝐴 × 𝐵))) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵))
5654, 55eqtr3i 2843 . . . . . . . . . . . . . . 15 ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) = (((𝐴 × V) ∩ 𝑅) ∖ (𝐴 × 𝐵))
57 difxp2 6016 . . . . . . . . . . . . . . 15 (𝐴 × (V ∖ 𝐵)) = ((𝐴 × V) ∖ (𝐴 × 𝐵))
5853, 56, 573sstr4i 4007 . . . . . . . . . . . . . 14 ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵))
59 rnss 5802 . . . . . . . . . . . . . 14 (((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (𝐴 × (V ∖ 𝐵)) → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵)))
6058, 59mp1i 13 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ ran (𝐴 × (V ∖ 𝐵)))
61 rnxp 6020 . . . . . . . . . . . . 13 (𝐴 ≠ ∅ → ran (𝐴 × (V ∖ 𝐵)) = (V ∖ 𝐵))
6260, 61sseqtrd 4004 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵))
63 disj2 4403 . . . . . . . . . . . 12 ((ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅ ↔ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ⊆ (V ∖ 𝐵))
6462, 63sylibr 235 . . . . . . . . . . 11 (𝐴 ≠ ∅ → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅)
6550, 64syl 17 . . . . . . . . . 10 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅)
66 ssdisj 4405 . . . . . . . . . 10 ((ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ⊆ ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∧ (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐴 × V)) ∩ 𝐵) = ∅) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅)
6748, 65, 66syl2an2 682 . . . . . . . . 9 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (ran ((𝑅 ∖ (𝐴 × 𝐵)) ∩ (𝐶 × V)) ∩ 𝐵) = ∅)
6844, 67syl5eq 2865 . . . . . . . 8 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅)
69 disj3 4399 . . . . . . . 8 ((((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∩ 𝐵) = ∅ ↔ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵))
7068, 69sylib 219 . . . . . . 7 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵))
7170eqcomd 2824 . . . . . 6 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))
7239, 71uneq12d 4137 . . . . 5 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → ((((𝑅 ∩ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵) ∪ (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∖ 𝐵)) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)))
7317, 72syl5eq 2865 . . . 4 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → ((𝑅𝐶) ∖ 𝐵) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)))
74 uncom 4126 . . . . 5 (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)) = (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅)
75 un0 4341 . . . . 5 (((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) ∪ ∅) = ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶)
7674, 75eqtr2i 2842 . . . 4 ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = (∅ ∪ ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶))
7773, 76syl6reqr 2872 . . 3 ((𝐶 ≠ ∅ ∧ 𝐶𝐴) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
7877ancoms 459 . 2 ((𝐶𝐴𝐶 ≠ ∅) → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
7910, 78pm2.61dane 3101 1 (𝐶𝐴 → ((𝑅 ∖ (𝐴 × 𝐵)) “ 𝐶) = ((𝑅𝐶) ∖ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wne 3013  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  ifcif 4463   × cxp 5546  ran crn 5549  cres 5550  cima 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-br 5058  df-opab 5120  df-xp 5554  df-rel 5555  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator